Boltzmann Entropy

Date:

28 July 2019

Dependency

Thermodynamic Potentials

What is the problem ?

  • The Key of Statistical Mechanics

  • Link between Thermodynamics (macroscopic) And Statistical Mechanics (microscopic)

Derivation

Step 1 Fundamental equation in the Entropy Representation

From Thermodynamic Potentials, we have

\[\begin{split}\begin{align*} &dS ={1\over T}dE - \sum\limits_{i=1}^r {F_i \over T} dx_i - \sum\limits_{j=1}^s {\mu_j \over T} dN_j \\ &\Rightarrow S=S(E,{x_i},{N_j}) \end{align*}\end{split}\]

Step 2 Previously, we treated \(S\) purely as a theoretical macroscopic variable. But Boltzmann figured out the exact microscopic expression (origin) of it!

\[\begin{split}\begin{align*} & \boxed{ S(E,{x_i},{N_j}) = k_B \ln \Omega(E,{x_i},{N_j}) }\\ & where\\ & k_B: \text{ Boltzmann Constant }\\ & \Omega(E,{x_i},{N_j}): \text{ Number of Microstates corresponding to } (E,{x_i},{N_j}) \end{align*}\end{split}\]

Example 1: Two State System

\(N\) identical particles, with two energy levels \(\epsilon_n = (-1)^n \epsilon, \;\; n = 1,2\)

  • Combination : The number of ways of picking \(k\) unordered outcomes from \(n\) possibilities

  • Stirling Approximation: \(\ln N! \approx N\ln N -N\)

\[\begin{split}\begin{align*} & \begin{cases} N=N_1+N_2\\ E=-\epsilon N_1+ \epsilon N_2 \end{cases} \Rightarrow \begin{cases} N_1 = {N\over 2}(1-{E\over N \epsilon})\\ N_2 = {N\over 2}(1+{E\over N \epsilon}) \end{cases}\\ \Omega(E,N;N_2)& = {N!\over N_2!(N-N_2)!}\;\; (\text{Combination})\\ S(E,N;N_2)& = k_B \ln \Omega=...(\text{Stirling Approximation})\\ & = -k_B N\left[ {N_2\over N}\ln {N_2\over N}+ {N-N_2\over N}\ln {N-N_2\over N}\right]\\ & \text{Next just substitute } N_2 \text{ we get } S(E,N) \end{align*}\end{split}\]