Thermodynamic Potentials
- Date:
28 July 2019
Dependency
What is the problem ?
The Key of Thermodynamics
The Essence of Enternal Energy, Helmholtz energy, Enthalpy, Gibbs energy
Derivation
Step 1 Fundamental Equation For Internal Energy
\[\begin{split}\begin{align*}
dE & = TdS + \sum\limits_{i=1}^r F_i dx_i + \sum\limits_{j=1}^s \mu_j dN_j \\
& where\\
& T: \text{Temperature}\\
& S: \text{Entropy}\\
& F_i: \text{Generalized Forces such as Pressure} P\\
& x_i: \text{Generalized Coordinates such as Volume} V\\
& \mu_j: \text{Chemical Potentials}\\
& N_j: \text{Particles Numbers}\\
& and \\
& S,{x_i},{N_j} \text{ are Natural Variables of } E
\end{align*}\end{split}\]
Step 2 Helmholtz energy, Enthalpy, Gibbs energy are simply Legendre Transformation of Internal Energy
\[\begin{split}\begin{align*}
\text{Internal Energy} & E(S,{x_i},{N_j})\\
\text{Helmholtz energy} & F(T,{x_i},{N_j})\equiv E-TS \\
\text{Enthalpy} & H(S,{F_i},{N_j})\equiv E- \sum\limits_{i=1}^r F_i x_i\\
\text{Gibbs energy} & G(T,{F_i},{N_j})\equiv E-TS -\sum\limits_{i=1}^r F_i x_i\\
\end{align*}\end{split}\]