Special vs General Relativity

Date:

25 Sep 2019

What is the problem ?

  • Gravity is two objects pulling each other

  • Einstein thinks the “pulling” is actually achieved by
    • Object has mass, this mass causes space to deform

    • The deform causes two object to move closer, as if they are pulling each other

  • In Special Relativity, we don’t consider gravity

  • In General Relativity, we do consider gravity

  • Relativity studys the Geometry of Spacetime

Derivation

Step 1 When we study geometry, we must define Coordinates and Metric, then we can talk about distance.

\[\begin{split}\begin{align*} & \text{Coordinates: Alice stand at } x=3 \text{, Bob } x=5\\ & \text{Metric: They agree that each unit length }g=5m\\ & \text{Then their distance }\Delta s = g \cdot \Delta x = 5m\cdot 2=10m\\ & \text{Consider squared length of a small distance }(ds)^2\\ & \text{Notation: } ds^2=(ds)^2\\ & \text{2D Euclidean Coordinates: } ds^2=dx^2 + dy^2\\ & \text{2D Polar Coordinates: } ds^2= dr^2 + r^2 d\theta^2\\ & \text{Write in General form: } ds^2= g_{ab}dx^{(a)}dx^{(b)}\\ & g_{ab} \text{ is called Metric Tensor and Einstein summation convention is used}\\ & \text{Then:}\\ & \text{2D Euclidean: } x^{(0)}=x, x^{(1)}=y\text{ and } g_{00}=g_{11}=1, g_{01}=g_{10}=0\\ & \text{2D Polar: } x^{(0)}=r, x^{(1)}=\theta\text{ and } g_{00}=1, g_{11}=r^2, g_{01}=g_{10}=0 \\ & \text{SR = Special Relativity, GR = General Relativity}\\ & \text{4D Spacetime(SR): Ignore mass deforming space} \\ & \;\;\;\; \boxed{ds^2 = -dt^2+dx^2+dy^2+dz^2}\\ & \text{4D Spacetime(SR): } x^{(0)}=t, x^{(1)}=x, x^{(2)}=y, x^{(3)}=z\\ & \text{4D Spacetime(SR): } g=g_{\text{Minkowski}}= \left(\array{ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 }\right) \\ & \text{4D Spacetime(GR): Consider mass M deforming space} \\ & \;\;\;\; \boxed{ds^2 = -(1-{r_s\over r}) dt^2+(1-{r_s\over r})^{-1} dr^2 +r^2 d\theta^2+ r^2 \sin^2 \theta d\phi^2 }\\ & \text{Where } r_s=2M \text{ is called Schwarzschild radius}\\ & \text{4D Spacetime(GR): } x^{(0)}=t, x^{(1)}=r, x^{(2)}=\theta, x^{(3)}=\phi \\ & \text{4D Spacetime(GR): } g=g_{\text{Schwarzschild}} \\ \end{align*}\end{split}\]

Step 2 Some definitions

\[\begin{split}\begin{align*} & \textbf{I. Some definitions: SR \& GR }\\ & \text{Inner Product: } A\cdot B= g_{ab}A^{(a)}B^{(b)} \\ & \text{Proper Time: } d\tau :=\sqrt{-ds^2} \\ & \text{Four Velocity: } u^{(a)}:={dx^{(a)}\over d\tau}\\ & \Rightarrow u^2=u\cdot u = g_{ab}{dx^{(a)} \over d\tau}{dx^{(b)} \over d\tau} = {ds^2\over -ds^2} =-1\\ & \text{Four Momentum: } p:=mu\Rightarrow p^2=-m \;\;\;\; =0 \text{ for Photon}\\ & \text{Relativistic Energy: } E:=-g_{00} p^{(0)}\\ & \text{Relativistic Momentum: }\vec{p}:=(p^{(1)},p^{(2)},p^{(3)})\\ & \textbf{II. SR}\\ & \text{Velocity: } \vec{v}=({dx\over dt},{dy\over dt},{dz\over dt})\;\;\;\; |\vec{v}|\le c\equiv1\\ & \Rightarrow ds^2 = -dt^2+dx^2+dy^2+dz^2 = (-1+\vec{v}^2)dt^2\\ & \text{Proper Time: } d\tau :=\sqrt{-ds^2}=\sqrt{1-\vec{v}^2}dt\\ & \text{Relativistic Energy: } E:=-(-1)p^{(0)}=m{dt\over d\tau}=m {1\over \sqrt{1-\vec{v}^2}}\\ & \text{Relativistic Momentum: }\vec{p}=m {\vec{v}\over \sqrt{1-\vec{v}^2}}\\ & \textbf{III. SR Photon}\\ & \text{Four Momentum: }p=(E,Ev_x,Ev_y,Ev_z)\\ & \text{Relativistic Energy: } E_{\text{Frame of source}}\equiv E_0={1\over \lambda_0}\\ & \;\;\;\; \text{(Refer to Lorentz Transformation for below:)}\\ & \;\;\;\; v_x=1,v_y=v_z=0 \Rightarrow(E,E,0,0)=\Lambda (E_0,E_0,0,0)\\ & \;\;\;\; \Rightarrow \boxed{ E=E_0 \gamma-E_0 \gamma v \;\;\;\; \text{Doppler effect} }\\ & \textbf{IV. GR}\\ & \text{Proper Time: Choose coordinate such that } \\ & \;\;\;\; dx^{(1)}=dx^{(2)}=dx^{(3)}=0\Rightarrow d\tau :=\sqrt{-g_{00} }dt =\sqrt{(1-{r_s\over r}) } dt \\ & \text{Application: Gravitational Redshift} \\ & \;\;\;\; \lambda =cT,c=1\Rightarrow {\lambda_{\text{Receiver}} \over \lambda_{\text{Emitter}}} = {\Delta \tau_R \over \Delta \tau_E}={\sqrt{1-r_s/ r_R } \over \sqrt{1-r_s/ r_E }} \\ & \;\;\;\; \approx 1-{M\over r_R}+ {M\over r_E}\overset{\Delta r\ll r_E}{\approx} 1+{M\over r_E^2}\Delta r =1+g\Delta r\\ \end{align*}\end{split}\]

Step 3 Equation of Motion: the Geodesic Equation

  • Also base on Variational Principle, same as Newton’s equation of motion and Shrodinger Equation

  • Specifically, we will maximize proper time

\[\begin{split}\begin{align*} & \text{Geodesic: (1) Path with longest proper time. OR (2) Straight line}\\ & \text{Parameterize the line with one varibale: }l\in [0,1]\\ & \text{Notation: } \dot{x}={dx\over dl}\\ & \tau = \int \sqrt{-ds^2}= \int_0^1 \sqrt{-g_{ab}\dot{x}^{(a)}\dot{x}^{(b)}} dl\equiv \int_0^1 L(x,\dot{x};l) dl\\ & \text{Note that } d\tau = L dl\\ & \text{To maximize }\tau \text{, use Euler-Lagrange Equation: } {\partial L\over \partial x^{(c)}}={d\over dl}{\partial L\over \partial \dot{x}^{(c)} } \\ & \text{LHS} = {1\over 2}L^{-1}( -{\partial g_{ab}\over \partial x^{(c)}}\dot{x}^{(a)}\dot{x}^{(b)} ) = {1\over 2}( -{\partial g_{ab}\over \partial x^{(c)}}{dx^{(a)} \over d\tau}\dot{x}^{(b)} ) \\ & \text{RHS} ={d\over dl}[ {1\over 2}L^{-1}( -g_{ab}\delta_{ac} \dot{x}^{(b)} -g_{ab}\dot{x}^{(a)}\delta_{bc}) ] ={d\over dl}[ -g_{bc} {d{x}^{(b)} \over d\tau}] \\ & {\text{LHS} \over L} ={\text{LHS} \over L} \\ & \Rightarrow \boxed{ {1\over 2}( -{\partial g_{ab}\over \partial x^{(c)}}{dx^{(a)} \over d\tau}{dx^{(b)} \over d\tau} ) = {d\over d\tau}[ -g_{bc} {dx^{(b)} \over d\tau}] \;\;\;\;\text{Geodesic Equation}}\\ & \Rightarrow \boxed{ 0 = {d^2x^{(b)} \over d\tau^2} \;\;\;\;\text{Geodesic Equation (SR)}} \\ \end{align*}\end{split}\]