Propagator
- Date:
11 Aug 2019
Dependency
What is the problem ?
In Quantum Mechanics there is no actual path of a particle but only the probability of transition from one state \(a\) to another state \(b\)
What is the probability \(P_{a\to b}\) from \((t_a,x_a)\) to \((t_b,x_b)\) ?
Derivation
Step 1 Feynman says
\[\begin{split}\begin{align*}
& P_{a\to b} = |K_{a\to b}|^2\\
& where\\
& \text{Propagator }K_{a\to b} = \sum\limits_{\text{every path }x(t)\text{ from }a \to b}
{1\over A} e^{{i\over \hbar} S[x(t)]} \\
& A: \text{ Normalization Factor}
\end{align*}\end{split}\]
This looks really like Boltzmann Factor
Makes me question whether Quantum Mechanics is actually a result of Classic probability
Step 2 Approximation for small time interval \(\epsilon\)
\[\begin{align*}
& K_{a\to b} \approx {1\over A} \exp \left[ {i\over \hbar} \cdot \epsilon \cdot L({x_b+x_a\over 2}, {x_b-x_a\over \epsilon}, {t_b+t_a\over 2}) \right]
\end{align*}\]
Step 3 Wave Functions are simply Propagators with common starting point \((t_0,x_0)\)
\[\begin{split}\begin{align*}
& \psi(x_i,t_i) \equiv K_{0\to i} \\
& \psi(x_j,t_j) = \int_{-\infty}^{\infty} dx_i \; \psi(x_i,t_i)
K_{i \to j}
\end{align*}\end{split}\]
Doubt 1
The integration over \(dx_i\) has dimension of Length, but in Step 1 we are only summing over all possible paths, which should be dimensionless
Derivation Part 2
Step 4 Combine Step 2 and Step 3 to get Schrodinger Equation
\[\begin{split}\begin{align*}
& \psi(x,t+\epsilon) ={1\over A} \int_{-\infty}^{\infty} dy \; \psi(y,t)
\exp \left\{ {i\over \hbar} \epsilon
\left[ {1\over 2} m({x-y\over \epsilon})^2-V({x+y \over 2},t) \right]
\right\} \\
& \text{After some Taylor Expansions...}\\
& \psi(x,t) + \epsilon {\partial \psi \over \partial t} = \psi(x,t) -
{\hbar \epsilon \over 2im} {\partial^2 \psi \over \partial x^2} - {i\epsilon \over \hbar}V(x,t) \psi \\
&\boxed{ i\hbar {\partial \psi \over \partial t} = -
{\hbar^2 \over 2m} {\partial^2 \psi \over \partial x^2} + V\psi
\;\;\;\; \text{Schrodinger Equation}}\\
\end{align*}\end{split}\]