Boltzmann Entropy ================================= :Date: 28 July 2019 Dependency ------------- :doc:`Thermodynamic-Potentials` What is the problem ? ------------------------- - The **Key** of Statistical Mechanics - Link between **Thermodynamics (macroscopic)** And **Statistical Mechanics (microscopic)** Derivation ------------- **Step 1** **Fundamental** equation in the **Entropy Representation** From :doc:`Thermodynamic-Potentials`, we have .. math:: \begin{align*} &dS ={1\over T}dE - \sum\limits_{i=1}^r {F_i \over T} dx_i - \sum\limits_{j=1}^s {\mu_j \over T} dN_j \\ &\Rightarrow S=S(E,{x_i},{N_j}) \end{align*} **Step 2** Previously, we treated :math:`S` purely as a theoretical macroscopic variable. But Boltzmann figured out the exact microscopic expression (origin) of it! .. math:: \begin{align*} & \boxed{ S(E,{x_i},{N_j}) = k_B \ln \Omega(E,{x_i},{N_j}) }\\ & where\\ & k_B: \text{ Boltzmann Constant }\\ & \Omega(E,{x_i},{N_j}): \text{ Number of Microstates corresponding to } (E,{x_i},{N_j}) \end{align*} Example 1: Two State System --------------------------------- :math:`N` identical particles, with two energy levels :math:`\epsilon_n = (-1)^n \epsilon, \;\; n = 1,2` - Combination_ : The number of ways of picking :math:`k` unordered outcomes from :math:`n` possibilities - Stirling Approximation: :math:`\ln N! \approx N\ln N -N` .. _Combination: http://mathworld.wolfram.com/Combination.html .. math:: \begin{align*} & \begin{cases} N=N_1+N_2\\ E=-\epsilon N_1+ \epsilon N_2 \end{cases} \Rightarrow \begin{cases} N_1 = {N\over 2}(1-{E\over N \epsilon})\\ N_2 = {N\over 2}(1+{E\over N \epsilon}) \end{cases}\\ \Omega(E,N;N_2)& = {N!\over N_2!(N-N_2)!}\;\; (\text{Combination})\\ S(E,N;N_2)& = k_B \ln \Omega=...(\text{Stirling Approximation})\\ & = -k_B N\left[ {N_2\over N}\ln {N_2\over N}+ {N-N_2\over N}\ln {N-N_2\over N}\right]\\ & \text{Next just substitute } N_2 \text{ we get } S(E,N) \end{align*}