Hartree Fock Method
- Date:
27 July 2019
What is the problem ?
Calculate the approximate wavefunction and energy for atoms
Derivation
Step 1 Approximate the wavefunction using Slater Determinant
\[\begin{split}\Psi = {1\over \sqrt{N!} }
\begin{vmatrix}
\chi_1(x_1) & \chi_2(x_1) & ... & \chi_N(x_1)\\
\chi_1(x_2) & \chi_2(x_2) & ... & \chi_N(x_2)\\
...\\
\chi_1(x_N) & \chi_2(x_N) & ... & \chi_N(x_N)
\end{vmatrix}\end{split}\]
Step 2 The system Hamiltonian after Born Oppenheimer Approximation
\[\begin{split}\begin{align*}
& H = \sum\limits_i h(i) + \sum\limits_{i<j} v(i,j) + V_{NN} \\
& where \\
& h(i) = -{1\over 2}\nabla_i^2 - \sum\limits_A {Z_A\over r_{iA}} \\
& v(i,j) = {1\over r_{ij}}
\end{align*}\end{split}\]
Step 3 The energy
\[\begin{split}\begin{align*}
E & = \langle \Psi |H| \Psi \rangle \\
& = \sum\limits_i \langle i|h|i \rangle
+{1\over 2} \sum\limits_{ij}[ii|jj]-[ij|ji] \\
& where\\
& \langle i|h|j \rangle = \int dx_1 \; \chi_i^* h \chi_j\\
& [ij|kl] = \int dx_1 dx_2 \; \chi_i^* \chi_j {1\over r_{ij}} \chi_k^* \chi_l
\end{align*}\end{split}\]
Step 4 Use Lagrange Multiplier to minimize the energy wrt changes in the orbitals \(\chi_i \to \chi_i+\delta \chi_i\)
under constraint \(\langle i|j \rangle = \delta_{ij}\)
\[\begin{split}\begin{align*}
& L = E - \sum\limits_{ij} \epsilon_{ij} [\langle i|j \rangle - \delta_{ij}]\\
& \delta L =0 \Rightarrow \boxed{
f \chi_i = \epsilon_i \chi_i
}\\
& where \\
& \text{Fock operator }
f \equiv h + \sum\limits_j J_j - K_j\\
& - where \\
& \text{Coulomb operator }
J_j(x_1) = \int dx_2 \; |\chi_j(x_2)|^2 {1\over r_{12}} \\
& \text{Exchange operator }
K_j(x_1) \chi_i(x_1) = \left[ \int dx_2\; \chi_j^*(x_2) {1\over r_{12}} \chi_i(x_2)\right] \chi_j(x_1) \\
\end{align*}\end{split}\]
Step 5 Introducing basis functions to transform the above integral equation into a matrix equation
TO BE CONTINUED