Kramers Reaction Rate Theory

Date:

28 July 2019

Dependency

What is the problem ?

../_images/Kramers-Reaction-Rate-Theory-1.webp

TO BE MODIFIED

\[\require{mhchem} \ce{A <=> B ->[k^+] C}\]

Let the transition state \(B\) correspond to reaction coordinate \(x=x^{\ne}\)

Derivation

Step 1 Transition State Theory (TST)

\[\begin{split}\begin{align*} & k^+ = {\text{flux} \over N_A} \\ & \text{and}\\ & \text{flux} = \underbrace{{N^{\ne} \over \Delta x}}_{\text{density}} \underbrace{\langle v^{\ne} \rangle}_{velocity} \\ & {N^{\ne} \over N_A} = {z^{\ne} \over z_A} \; (\text{Boltzmann Factor})\\ \Rightarrow & k^+ = {z^{\ne} \over z_A} {\langle v^{\ne} \rangle \over \Delta x} \end{align*}\end{split}\]

Step 2 Find \(z^{\ne}\)

\[\begin{split}\begin{align*} & z^{\ne} = {1\over h} \int dp \int_{x^{\ne}-{\Delta x \over 2}}^{x^{\ne}+{\Delta x \over 2}} dx \; \exp[{p^2\over 2m}+V(x)] \\ &\text{Assume } V=const \text{ around } x^{\ne}\\ \Rightarrow z^{\ne} & = {1\over h} \Delta x\; e^{-\beta V(x^{\ne})} \sqrt{2\pi m \beta} \end{align*}\end{split}\]

Step 3 Find \(z^A\)

TO BE ADDED

Step 4 Find \(\langle v^{\ne} \rangle\)

TO BE ADDED

Step 5 Combining above

\[\boxed{ k^+ = {\omega_A \over 2\pi}e^{-\beta V(x^{\ne})} \;\;\; \text{TST} }\]

Step 6 Modify TST to get Kramers Theory

TO BE FURTHER EXPLAINED

\[\boxed{ k^+ = {1\over \omega_B}\left(-{\gamma \over 2}+\sqrt{{\gamma^2 \over 4}+\omega_B^2}\right) \left\{ {\omega_A \over 2\pi}e^{-\beta V(x^{\ne})} \right\} \;\;\; \text{Kramers} }\]