Hohenberg Kohn Variational Principle
- Date:
13 Sep 2019
Derivation
Step 1 Recall the textbook Variational Principle to find Ground State energy \(E\)
\[\begin{align*}
& E_{GS} = \min\limits_{\psi} \langle \psi|H|\psi \rangle
\end{align*}\]
Step 2 Hohenberg Kohn Variational Principle (Constrained Search Method by Levy and Lieb)
\[\begin{split}\begin{align*}
& \underbrace{n(r)}_{\text{Electron Density}} =
\underbrace{|\psi(r)|^2}_{\text{Probability to find it at } r} \\
& \text{EACH wavefunction }\psi(r) \text{ gives ONE density distribution }n(r)\\
& \text{But EACH }n(r) \text{ may be generated by MANY }\psi(r) \\
& \Rightarrow \psi_n^{(i)}(r) \text{ so that } n(r)= |\psi_n^{(1)}(r)|^2 = |\psi_n^{(2)}(r)|^2 = ...\\
& \text{Thus first fix }n, \text{ find }
F[n]\equiv \min\limits_{i} \langle \psi_n^{(i)}|T+U_{\text{Interaction}}|\psi_n^{(i)} \rangle \\
& \text{Then find } E_{GS} = \min\limits_{n} F[n]+\int \underbrace{v_{\text{External}}(r)}_{\text{Energy per particle}} n(r)dr
\end{align*}\end{split}\]