Exchange and Correlation
- date:
3 Nov 2019
What is the idea?
The task is to find the exchange term
In local density approximation (LDA), the exchange term is from
Hatree Fock Theory, and the correlation term is from Quantum Monte
Carlo
Thus first review Hatree Fock theory
Electron gas
Non-Interacting
\[\begin{split}\begin{align*}
& r_s:\text{radius of sphere with one }e^- \quad 4\pi {r_s^3\over 3}={1\over n}\\
& \sigma:\text{spin}\\
& \text{planewave eigenstates}:e^{ikr}\\
& \text{Fermi wavevector}:k_F^\sigma =\max k^\sigma\\
& k^\sigma \text{ means dependence on }\sigma \\
& \text{Average Energy}: {T_\text{tot}^\sigma\over N}={\int dk\; k^2/2\over \int dk }={3\over 10}(k_F^\sigma)^2\\
\end{align*}\end{split}\]
Interacting
\[\begin{split}\begin{align*}
& H= \sum_i {-\nabla^2\over2}
\underbrace{+{1\over 2} \sum_{i\ne j}{1\over |r_i-r_j|}}_{V_{\text{e-e}}}
\underbrace{-{1\over2}\int drdr'{n(r)n(r')\over |r-r'|}}_{V_{\text{e-ion}}} \\
& \text{with assumption }n_{\text{ion}}(r)=n(r) \\
\end{align*}\end{split}\]
Hartree Fock Equation
\[\begin{split}\begin{align*}
& H=\sum_i^{N_e}{-\nabla_i^2\over 2}-\sum_i^{N_e}\sum_I^{N_n}{Z_I\over |r_i-R_I|}
+{1\over 2}\sum_i^{N_e}\sum_{j\ne i}^{N_e} {1\over |r_i-r_j|}+{1\over 2}\sum_I^{N_n}\sum_{J\ne I}^{N_n}{Z_I Z_J\over |R_I-R_J|}\\
& = H_e+H_n \\
& H_e\equiv \sum_i h_1(r_i)+{1\over 2}\sum_{i\ne j}h_2(r_i,r_j) \\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& \Phi = {1\over \sqrt{N!} }
\begin{vmatrix}
\phi_1(x_1) & \phi_2(x_1) & ... & \phi_N(x_1)\\
\phi_1(x_2) & \phi_2(x_2) & ... & \phi_N(x_2)\\
...\\
\phi_1(x_N) & \phi_2(x_N) & ... & \phi_N(x_N)
\end{vmatrix} \\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& E_{HF}=\langle \Phi| H_e|\Phi \rangle=\sum_i \langle \phi_i| h_1|\phi_i \rangle +\boxed{{1\over 2}\times}\sum_{i, j} [ \langle \phi_i \phi_j| h_2|\phi_i\phi_j \rangle - \langle \phi_j\phi_i| h_2|\phi_i \phi_j \rangle ] \\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& \phi_k\to\phi_k+\delta\phi_k\Rightarrow \delta\left[ \langle \Phi| H_e|\Phi \rangle - \sum_{i,j} \lambda_{ij}(\langle \phi_i|\ \phi_j \rangle -\delta_{ij} )\right]=0 \\
& h_1\phi_k(x_1)+\sum_i\left[ \int dx_2\; \phi_i^*(x_2) h_2 \phi_i(x_2)\phi_k(x_1) -\int dx_2\; \phi_i^*(x_2) h_2 \phi_i(x_1)\phi_k(x_2) \right] =\sum_i \lambda_{ki}\phi_i(x_1)\\
& \left[ h_1+\sum_i(J_i-K_i) \right]\phi_k=\sum_i \lambda_{ki}\phi_i \\
& \text{diagnalize } \lambda_{ki}=\delta_{ki}\epsilon_k \\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& \sum_k \epsilon_k = \sum_i \langle \phi_i| h_1|\phi_i \rangle +\boxed{1\times}\sum_{i, j} [ \langle \phi_i \phi_j| h_2|\phi_i\phi_j \rangle - \langle \phi_j\phi_i| h_2|\phi_i \phi_j \rangle ] \\
\end{align*}\end{split}\]
Exchange Energy
\[\begin{split}\begin{align*}
& E_i\phi_i(r)=\left[{-\nabla^2\over 2}+V_{\text{e-e}} +V_{\text{e-ion}}\right]\phi_i(r) \\
& \qquad \qquad\boxed{- \sum_j \delta_{\sigma_i\sigma_j} \int dr' {\phi_j^*(r')\phi_i(r')\phi_j(r)\over|r-r'|} \quad\text{exchange}}\\
& i,j\text{ are combined orbit/spin indices} \\
&V_{\text{e-e}} = \sum_j \int dr' {|\phi_j(r')|^2\over |r-r'|}= \int dr' {\sum_j|\phi_j(r')|^2\over |r-r'|}=\int dr' {n(r')\over |r-r'|}\\
&V_{\text{e-ion}} = \sum_k -{Z_k\over |r-R_k|}\to\int -{n(R)dR\over |r-R|} \\
& \text{with assumption }n_{\text{ion}}(r)=n(r) \\
& \Rightarrow V_{\text{e-e}}+V_{\text{e-ion}}=0 \\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& \text{Proof by substitution}\\
& E_ke^{ikr}={1\over2}k^2 e^{ikr} -\sum_{k'} \underbrace{\int dr'{ e^{-ik'r'}e^{ikr'}e^{ik'r} \over|r-r'|} }_I\\
& I=e^{ik'r} \int dr'{ e^{i(k-k')r'} \over|r-r'|}=e^{ik'r}e^{i(k-k')r} \int_{|\vec{u}|>0} d\vec{u}{ e^{i(k-k')\vec{u}} \over |\vec{u}|} \\
&\qquad = e^{ikr} 4\pi \int_{u=0}^{\infty} du \; ue^{i(k-k')u}\\
& \qquad = 2\times \text{integration by parts}\\
&\qquad = e^{ikr} {4\pi\over (k-k')^2} \qquad \boxed{}\\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& \sum_{k'}{4\pi\over (k-k')^2}\to \int {d\vec{k}'\over (2\pi)^3}{4\pi\over (\vec{k}-\vec{k}')^2}\\
&={4\pi\over(2\pi)^2}\int \sin\theta \;d\theta\int_0^{k_F} dk'{k'^2\over k^2-2kk'\cos\theta +k'^2} \\
& = {4\pi\over(2\pi)^2}\int_0^{k_F}{k'^2\over 2kk'} dk'\ln( k^2+2kk's +k'^2 )_{s=-1}^1 \\
& = {1\over 2\pi}\int_0^{k_F}{k'\over k} dk' \left| {k^2+2kk' +k'^2 \over k^2-2kk's +k'^2} \right| \\
& = {1\over \pi}\int_0^{k_F}{k'\over k} dk' \left| {k+k' \over k-k'} \right| =...\\
& \Rightarrow \boxed{E_k={1\over 2}k^2-{k_F\over \pi }f({k\over k_F})\\
f(x)=1+{1-x^2\over 2x}\ln|{1+x\over 1-x}| } \\
\end{align*}\end{split}\]
\[\begin{split}\begin{align*}
& E_{HF}={1\over (2\pi)^3}4\pi\int_0^{k_F} k^2\left[{k^2\over 2}+\boxed{{1\over 2}\times}\left(-{k_F\over \pi}f({k\over k_F})\right)\right] \\
& {E_{HF}\over N}=...={2.21\over r_s^2}\underbrace{-{0.916\over r_s}}_{\epsilon_x}
\end{align*}\end{split}\]
correlation
\[\begin{align*}
& E_c:=E_{\text{real}}-T-E_x
\end{align*}\]
Helper: Delta Function
\[\begin{split}\begin{align*}
& f(x)={1\over 2\pi} \int dk\; e^{ikx}\left[\int dx' \;e^{-ikx'}f(x') \right] \\
& =\int dx' \; f(x')\underbrace{{1\over 2\pi}\int dk\; e^{ik(x-x')}}_{\delta(x-x')} \\
\end{align*}\end{split}\]