Non-equilibrium Thermodynamics
- Date:
28 July 2019
Dependency
What is the problem ?
Derivation
Step 1 Crooks Fluctuation Theorem relates work \(W\) of a non-equilibrium process to free energy \(\Delta G\) (an equilibrium property)
\[\begin{split}\begin{align*}
&\boxed{
{P_{A\to B}(W) \over P_{B\to A}(-W)} = e^{\beta (W-\Delta G)}
}\\
& where\\
& P = \text{Probability}\\
& A,B = \text{States}
\end{align*}\end{split}\]
Step 2 Proof of Step 1
TO BE ADDED
Step 3 Jarzynski Equality, a consequence of Crooks Fluctuation Theorem
\[\begin{split}\begin{align*}
&{P_{A\to B}(W) e^{-\beta W} = P_{B\to A}(-W)} e^{-\beta \Delta G}\\
& \text{Integrate over } P\\
& \Rightarrow \boxed{
\langle e^{-\beta W} \rangle = e^{-\beta \Delta G}
}
\end{align*}\end{split}\]
What is the significance ?
In order to calculate free energy:
Previously we need to simulate molecules in equilibrium process which is time consuming. Now we can just use Non-equilibrium process, saves a lot of time!
Perform multiple Non-equilibrium simulations, then:
Using Crooks Fluctuation Theorem, find \(W\) such that \(P_{A\to B}(W) = P_{B\to A}(-W)\), then \(\Delta G=W\)
Using Jarzynski Equality, \(\Delta G= {1\over -\beta}\ln \langle e^{-\beta W} \rangle\)