Classical Action

Date:

11 Aug 2019

What is the problem ?

  • Equivalent theory of Newton’s Law, but more fundamental.

Derivation

Step 1 Simplest scenario in nature: A particle travels from spacetime point \((t_a,x_a)\) to \((t_b,x_b)\), then the path \(x\) is a function of time \(t\), i.e. \(x(t)\)

Define Action, which is a Functional of \(x\)

\[\begin{split}\begin{align*} & \text{Action }S[x]=\int_{t_a}^{t_b} dt \; L(x,\dot{x},t)\\ & where \\ & \text{Lagrangian }L = {1\over 2} m\dot{x}^2-V(x,t) \end{align*}\end{split}\]

Step 2 Equivalent to Newton’s Law, the Principle of Least Action states that: The actual path that the particle would take is the one leads to minimum Action: \(\delta S=0\)

Therefore, to find \(x(t)\), we write down

\[\begin{split}\begin{align*} & \delta S \equiv S[x+\delta x]-S[x] = ... = \left. \delta x {\partial L \over \partial \dot{x}} \right|_{t_a}^{t_b} - \int_{t_a}^{t_b} dt \; \delta x \left( {d\over dt}{\partial L \over \partial \dot{x}}-{\partial L \over \partial x} \right) \\ & \delta S=0 \Rightarrow \boxed{ {d\over dt}{\partial L \over \partial \dot{x}}-{\partial L \over \partial x} = 0 \;\;\;\; \text{Euler-Lagrange Equation} }\\ & \text{From here we can solve }x(t)\text{ trivially} \end{align*}\end{split}\]

Example 1: Newton’s Law

\[\begin{split}\begin{align*} & L = {1\over 2} m\dot{x}^2-V(x,t) \Rightarrow {d\over dt}{m \dot{x}}+{\partial V \over \partial x} = 0\\ & \text{Since } F=- {\partial V \over \partial x} \Rightarrow {m \ddot{x}} = F\\ \end{align*}\end{split}\]