SR: Lorentz Transformation
- Date:
30 Sep 2019
Derivation
Step 1
\[\begin{split}\begin{align*}
& S'\text{ frame moves at }\vec{v}=(v,0,0) \text{ viewed from } S \text{ frame, then}\\
& {\partial x'^{(a)}\over \partial x^{(b)}}=\Lambda^a_b=
\begin{pmatrix}
\gamma & -\gamma v & 0 & 0 \\
-\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} =
\begin{pmatrix}
\cosh \Theta & -\sinh\Theta & 0 & 0 \\
-\sinh\Theta & \cosh \Theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}\\
& \text{Where }\gamma ={1\over \sqrt{1-v^2} }, \Theta=\tanh^{-1} v \\
& {\partial x^{(a)}\over \partial x'^{(b)}}=(\Lambda^{-1})^a_b=
\begin{pmatrix}
\gamma & \gamma v & 0 & 0 \\
\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} \\
\end{align*}\end{split}\]