Classical Action ================================= :Date: 11 Aug 2019 What is the problem ? ------------------------- - Equivalent theory of Newton's Law, but more fundamental. Derivation ------------- **Step 1** Simplest scenario in nature: A particle travels from spacetime point :math:`(t_a,x_a)` to :math:`(t_b,x_b)`, then the path :math:`x` is a function of time :math:`t`, i.e. :math:`x(t)` Define **Action**, which is a Functional of :math:`x` .. math:: \begin{align*} & \text{Action }S[x]=\int_{t_a}^{t_b} dt \; L(x,\dot{x},t)\\ & where \\ & \text{Lagrangian }L = {1\over 2} m\dot{x}^2-V(x,t) \end{align*} **Step 2** Equivalent to Newton's Law, the **Principle of Least Action** states that: The actual path that the particle would take is the one leads to **minimum Action**: :math:`\delta S=0` Therefore, to find :math:`x(t)`, we write down .. math:: \begin{align*} & \delta S \equiv S[x+\delta x]-S[x] = ... = \left. \delta x {\partial L \over \partial \dot{x}} \right|_{t_a}^{t_b} - \int_{t_a}^{t_b} dt \; \delta x \left( {d\over dt}{\partial L \over \partial \dot{x}}-{\partial L \over \partial x} \right) \\ & \delta S=0 \Rightarrow \boxed{ {d\over dt}{\partial L \over \partial \dot{x}}-{\partial L \over \partial x} = 0 \;\;\;\; \text{Euler-Lagrange Equation} }\\ & \text{From here we can solve }x(t)\text{ trivially} \end{align*} Example 1: Newton's Law --------------------------------- .. math:: \begin{align*} & L = {1\over 2} m\dot{x}^2-V(x,t) \Rightarrow {d\over dt}{m \dot{x}}+{\partial V \over \partial x} = 0\\ & \text{Since } F=- {\partial V \over \partial x} \Rightarrow {m \ddot{x}} = F\\ \end{align*}