Non-equilibrium Thermodynamics ================================= :Date: 28 July 2019 Dependency ------------- - `Boltzmann Distribution`_ .. _Boltzmann Distribution: What is the problem ? ------------------------- Derivation ------------- **Step 1** **Crooks Fluctuation Theorem** relates **work** :math:`W` of a non-equilibrium process to **free energy** :math:`\Delta G` (an equilibrium property) .. math:: \begin{align*} &\boxed{ {P_{A\to B}(W) \over P_{B\to A}(-W)} = e^{\beta (W-\Delta G)} }\\ & where\\ & P = \text{Probability}\\ & A,B = \text{States} \end{align*} **Step 2** Proof of **Step 1** *TO BE ADDED* **Step 3** **Jarzynski Equality**, a consequence of Crooks Fluctuation Theorem .. math:: \begin{align*} &{P_{A\to B}(W) e^{-\beta W} = P_{B\to A}(-W)} e^{-\beta \Delta G}\\ & \text{Integrate over } P\\ & \Rightarrow \boxed{ \langle e^{-\beta W} \rangle = e^{-\beta \Delta G} } \end{align*} What is the significance ? ----------------------------- In order to calculate free energy: Previously we need to simulate molecules in equilibrium process which is time consuming. Now we can just use Non-equilibrium process, saves a lot of time! Perform multiple Non-equilibrium simulations, then: - Using Crooks Fluctuation Theorem, find :math:`W` such that :math:`P_{A\to B}(W) = P_{B\to A}(-W)`, then :math:`\Delta G=W` - Using Jarzynski Equality, :math:`\Delta G= {1\over -\beta}\ln \langle e^{-\beta W} \rangle`