Kramers Reaction Rate Theory =============================== :Date: 28 July 2019 Dependency ------------- - `Statistical Mechanics`_ - `Boltzmann Factor`_ .. _Statistical Mechanics: .. _Boltzmann Factor: What is the problem ? ------------------------ .. figure:: Kramers-Reaction-Rate-Theory-1.webp *TO BE MODIFIED* .. math:: \require{mhchem} \ce{A <=> B ->[k^+] C} Let the transition state :math:`B` correspond to **reaction coordinate** :math:`x=x^{\ne}` Derivation ------------- **Step 1** **Transition State Theory (TST)** .. math:: \begin{align*} & k^+ = {\text{flux} \over N_A} \\ & \text{and}\\ & \text{flux} = \underbrace{{N^{\ne} \over \Delta x}}_{\text{density}} \underbrace{\langle v^{\ne} \rangle}_{velocity} \\ & {N^{\ne} \over N_A} = {z^{\ne} \over z_A} \; (\text{Boltzmann Factor})\\ \Rightarrow & k^+ = {z^{\ne} \over z_A} {\langle v^{\ne} \rangle \over \Delta x} \end{align*} **Step 2** Find :math:`z^{\ne}` .. math:: \begin{align*} & z^{\ne} = {1\over h} \int dp \int_{x^{\ne}-{\Delta x \over 2}}^{x^{\ne}+{\Delta x \over 2}} dx \; \exp[{p^2\over 2m}+V(x)] \\ &\text{Assume } V=const \text{ around } x^{\ne}\\ \Rightarrow z^{\ne} & = {1\over h} \Delta x\; e^{-\beta V(x^{\ne})} \sqrt{2\pi m \beta} \end{align*} **Step 3** Find :math:`z^A` *TO BE ADDED* **Step 4** Find :math:`\langle v^{\ne} \rangle` *TO BE ADDED* **Step 5** Combining above .. math:: \boxed{ k^+ = {\omega_A \over 2\pi}e^{-\beta V(x^{\ne})} \;\;\; \text{TST} } **Step 6** Modify **TST** to get **Kramers Theory** *TO BE FURTHER EXPLAINED* .. math:: \boxed{ k^+ = {1\over \omega_B}\left(-{\gamma \over 2}+\sqrt{{\gamma^2 \over 4}+\omega_B^2}\right) \left\{ {\omega_A \over 2\pi}e^{-\beta V(x^{\ne})} \right\} \;\;\; \text{Kramers} }