[Q mixer tuning

Ding Ruiqi
January 2021

1 Introduction

The pairs of QM analog ports: (1, 2), (3, 4)... generates In phase (I) and
Quadrature (Q) signals at lower frequency (e.g. w =50 MHz) which can be
mixed with the Local oscillator (LO) signal at higher frequency (e.g. € =6
GHz):

sinwt cos ¢ + coswt sin ¢ = sin(wt + @) (1)

In phase Quadrature

By adjusting the amplitudes cos ¢ and sin ¢ of I and @ respectively, we can
adjust the phase of the resulting RHS signal.

The LO and IQ signals are combined to produce Lower Side Band (LSB)
and Higher Side Band (HSB) signals:

sin(Qt + @) - sin(wt + @) = % cos[(Q —w)t+ (P — ¢)] (2)
LSB
— S eosl(Q W)t + (24) (3)
———
HSB

The actual IQ mixer device does follow the above simple equations as the
amplitudes of LSB and HSB can be adjusted via the IQ signal.

2 Introducing the equipment

Spectrum analyzer

To Oscilloscope

3
\ i A0 YHANIA TYHEIS | XOI4E BV
- =ty o
- L]

Figure 1: Mixer tuning setup. Texts without box labels the physical equipment.
Texts with blue box label the ports of the IQ mixer. Texts with red box label
the external connections which are too large to show in the photo.

1Q signals from QM analog output ports are sent to two power splitters. The
splitters are not necessary but enables us to observe and debug the IQ output
from the oscilloscope. The other outputs of the splitters are then fed to the IQ
mixer through 10 dB attenuators. The attenuators are necessary to satisfy
the input power requirement of the IQ mixer. The IQ signals are combined with
the LO signal from the signal generator to produce an output on the RF port,
which is analyzed by the spectrum analyzer.

3 Setup the equipment correctly

3.1 Signal generator

e The signal generator must be connected to and external reference clock of
10 MHz. And declared in the python program. This is already done by
Ruiqi’s library.

e The output frequency and power must be checked and reset manually
upon restarting the device.

e The Pll mode should be turned on.

3.2 Spectrum analyzer

e The spectrum analyzer must be connected to and external reference clock
of 10 MHz. And declared in the python program. This is already done by
Ruiqi’s library.

e The image rejection option should be set to true for continuous measure-
ment. And false for pulses measurement. It is set to true in Ruiqi’s
library. The consequences of not using image rejection is the appearance
of a series of faulty peaks in the spectrum, as shown in Figure 2.

—40

—50

58 5.9 6.0 6.1 6.2
5.8 5.9 6.0 6.1 6.2 1le9
1le9

(a) before image rejection (b) after image rejection

Figure 2: Connecting the signal generator directly to the spectrum analyzer (set
to 6 GHz). (a) when image rejection is set to false. (b) when image rejection
is set to true.

e The measurement code. In any measurement one should first initialize the
device by specifying the center, span, number of points, estimated
power of the sweep, this step is time consuming so it should only be ex-
ecuted once. Subsequent measurement only gets the sweep data without
setting these values.

e The above step measures a frequency range determined by center, span.
In order to measure the power at a specific frequency, on should set span

= 250 MHz and number of points = 1. That is, a single frequency
measurement is simply a spectrum measurement with special parameters.

e The code for the above are provided by 4 functions in Ruiqi’s code. The
source code can be found at https://github.com/tesla-cat/LabTools/
blob/master/LabControl/Instruments/SA124B/SA124B.py, the appli-
cation example can be found at https://github.com/tesla-cat/LabTools/
blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.ipynb

def getFreqsAndAmps(self, val):
def initSweep(self, center, span, N, power):

def initSweepSingle(self, center, power):
return self.initSweep(center, span = 250e3, N =1, power)
def getSweep(self, length):

def getSweepSingle(self, length):
return self.getSweep(length) [length // 2]

3.3 QM

e Sometimes one may observe unexpected waveform on the QM output as
shown in Figure 3. (corresponding to new frequencies components in the
spectrum). The appearance of these components are likely caused by
an voltage overflow. The output range of QM machine is [—0.5,0.5] V.
Applying the IQ imbalance matrix for example can result in higher voltage
values at the analog output than the voltage specified on the waveforms
in the configuration.py file. One need to make sure that the overall
voltage is within the range of the analog outputs. Any overflow will be
automatically clamped by QM therefore causing unwanted harmonics.

e To resolve this issue one can simply adjust the amplitude in the config-
uration.py.

Figure 3: Unexpected waveform on the QM output (corresponding to new fre-
quencies components in the spectrum)

https://github.com/tesla-cat/LabTools/blob/master/LabControl/Instruments/SA124B/SA124B.py
https://github.com/tesla-cat/LabTools/blob/master/LabControl/Instruments/SA124B/SA124B.py
https://github.com/tesla-cat/LabTools/blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.ipynb
https://github.com/tesla-cat/LabTools/blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.ipynb

4 Tune the mixer

4.1 A general optimization algorithm

We have two steps for mixer tuning: Carrier(LO) Leakage and 1Q Imbalance.
Despite the difference in physical nature, their solution reduces to a simple two
parameter minimization problem.

Algorithm 1: A simple general 2D minimization algorithm for mixer
tuning

Result: xmin and ymin that minimizes the amplitude of certain
frequency f in the spectrum

set the initial center and span of x and y;

for some iterations do

for points on a 2D grid of z and y do
set the QM machine based on x, y. Handled by a callback

function in the actual code below;
sample the amplitude of f at this point;
end
find the xmin, ymin that gives the minimum amplitude;
update the centers to xmin, ymin;
reduce the span by some ratio;

end

def minimize(self, centers, spans, callback, amps, numIters, numGrids, shrink) :
spans = np.array(spans)
def minimizeIter(centers_, spans_):
x = np.linspace(centers_[0]-spans_[0]/2, centers_[0]+spans_[0]/2, numGrids[0])
y = np.linspace(centers_[1]-spans_[1]/2, centers_[1]+spans_[1]/2, numGrids[1])
power = np.zeros(numGrids)
for i, xi in enumerate(x):
for j, yj in enumerate(y):
callback(xi, yj)
power[i, j] = self.sal24B.getSweepSingle(len(amps))
if numGrids[0] ==
plt.plot(y, power[0, :])
plt.show()
elif numGrids[1] ==
plt.plot(x, power[:, 0])
plt.show()
else:
fig = go.Figure(data=[go.Surface(z=power, x=x, y=y)])
fig.show()
ind = np.unravel_index(np.argmin(power, axis=None), power.shape)
minx, miny = x[ind[0]], y[ind[1]]
return minx, miny
for i in range(numIters):

print('iter, centers, spans:', i, centers, spans)
centers = minimizelIter(centers, spans)
spans = spans * shrinkx*(i+1)

print('final centers:', centers)

return centers

The full python code can be found from https://github.com/tesla-cat/
Flask-React-Lab-Control/blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.
ipynb.

4.2 Carrier(LO) Leakage

Carrier(LO) Leakage is caused by DC-offsets in both I and Q ports of the mixer.
This offset is caused by a conversion loss imbalance between the two mixers
which are inside the IQ mixer shown in Figure 4.

.
a Lo
0 < Py (500 Load

LQ

Figure 4: Internal structure of the IQ mixer consists of two simple mixers.

The main consequence is that when performing up-conversion with the I1Q
mixer a certain amount of the LO signal will leak into the mixer RF output.
The LO to RF isolation, one of the metrics of an IQ mixer, quantifies this carrier
leakage.

To address this problem, an external DC voltage input is applied in the I
and Q ports in a way that the LO leakage is minimal, this corresponds to the
following python code:

def step2CarrierLeakage(self, centers, spans, numlIters, numGrids, shrink):
print('step2CarrierLeakage')
_, amps = self.sal24B.initSweepSingle(center=self.carrier, power=self.power)
def callback(I, Q):
self.qm.set_dc_offset_by_qe("qubit", "I", float(I))
self.qm.set_dc_offset_by_qge("qubit", "Q", float(Q))
return self.minimize(centers, spans, callback, amps, numIters, numGrids, shrink)

The minimal values are found in a few iterations over the search grid, re-
sulting in the landscapes shown in Figure 5.

https://github.com/tesla-cat/Flask-React-Lab-Control/blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.ipynb
https://github.com/tesla-cat/Flask-React-Lab-Control/blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.ipynb
https://github.com/tesla-cat/Flask-React-Lab-Control/blob/master/LabControl/tutorial-2-2-SA124B-MixerTuning.ipynb

] 30 -35
A"“ © —40
z -40 -
e z s
s N -5

o, _as f;s 2
N ¢ -50 ® - -50
Y x
- Yy X
(a) 1st minimization iteration (MI) (b) 2nd MI
—40
-58
a0 -45 56
) -8 -60
=0 -50 60
P o
’C)b“ -55 ’ s -62
o e, °)
o o ! -0 u““% 0 “ e
y X ¥ o 2. X
(c) 3rd MI () 4th MI

final centers: (-©.00031250000000000006, -0.004375)
@SA124B. initSweep: resolution= 250000.0

58 59 60 61 62
1e9

(e) resulting spectrum

Figure 5: (a)-(d) Four iterations of minimization of the LO leakage, x and y
are 1Q DC offsets, and z is the amplitude of LO frequency. (e) The resulting
spectrum, LO leakage at 6 GHz is perfectly eliminated.

4.3 1IQ Imbalance

1Q Imbalance refers to the amplitude and phase imbalances.

e Amplitude imbalances are caused by unbalances in the quadrature hybrid
coupler and different conversion losses in each of the mixers. It means
that the amplification / attenuation through the IQ mixer of each of the
signals is not identical. The amplitude deviation of a mixer is the metric
which quantifies the amplitude imbalance.

e Phase imbalances are due to phase unbalances of the hybrid coupler and
different electrical connection lengths. This imbalance is indicated by
the quadrature phase deviation of the mixer. Because of both of these
imbalances the cancellation of the unwanted sideband will not be perfect.

To address this problem, slight modifications in the amplitude and phase of
the oscillating signal applied in Q are performed.

def step3IqImbalance(self, centers, spans, numIters, numGrids, shrink):

print ('step3Iqlmbalance')

_, amps = self.sal24B.initSweepSingle(center=self.carrier+self.sideBand,
power=self .power)

def callback(gain, phase):
self.qm.set_mixer_correction("mixer_qubit", qubit_IF, qubit_LO,

IQ_imbalance(gain, phase))
return self.minimize(centers, spans, callback, amps, numIters, numGrids,

The minimal values are found in a few iterations over the search grid, re-
sulting in the landscapes shown in Figure 6.

-0
30

-2

PN

-32
3

-3

(a) 1st minimization iteration (MI)

-50

final centers: (-8.010188117223200248, 0.34602530554245503)
@SA124B.initSweep: resolution= 250000.0

-30

-0

-50

60

(e) resulting spectrum

_5A
56 -58
58
& -60
et
L -62
o =

3%

a0
Al
_ak
s
_o®

o
X

-42
-4
-45
U.g;
5
oF

Yy

(b) 4th MI

]
0,
¥ kg x

(d) 7th MI

Figure 6: (a)-(d) Four selected iterations of minimization of the LO leakage,
z and y are gain and phase, and z is the amplitude of upper side band
frequency. (e) The resulting spectrum, upper side band at 6 GHz + 50 MHz is
perfectly eliminated.

shrink)

5 Results

Each pairs of the QM analog output are tuned via the 3 step tuning process
and their optimal values are found as follows:

- channels 1, 2: cw = 0.3

- IQ final centers: (0.01593749999999999, -0.005312500000000001)

- gain, phase final centers: (-0.025000016106655396, 0.3386585083616496)
- channels 3, 4: cw = 0.3

- IQ final centers: (0.009999999999999995, -0.008750000000000003)

- gain, phase final centers: (0.02153621448045734, 0.35205362852657557)
- channels 5, 6: cw = 0.2

- IQ final centers: (0.008124999999999995, -0.022812500000000003)

- gain, phase final centers: (0.18426518494587707, 0.39080206877419243)
- channels 7, 8:

- IQ final centers: (0.0037500000000000007, -0.006562500000000003)

- gain, phase final centers: (0.09298324113900173, 0.35795467851316987)
- channels 9, 10:

- IQ final centers: (-0.00031250000000000006, -0.004375)

- gain, phase final centers: (-0.010188117223200248, 0.34602530554245503)

	Introduction
	Introducing the equipment
	Setup the equipment correctly
	Signal generator
	Spectrum analyzer
	QM

	Tune the mixer
	A general optimization algorithm
	Carrier(LO) Leakage
	IQ Imbalance

	Results

