
RL-QOC report

Ding Ruiqi

September 2020

1 Introduction

The objective of this experiment is to use Deep Reinforcement Learning
(DRL) to generate control signal that drives one quantum state to another.

The motivation is to utilize the aggressive behavior of RL, which means
that the RL agent will try to maximize the reward function at each time
step, this is equivalent to trying to achieve the goal with minimum number
of time steps. In comparison, for currently used algorithm known as GRAPE
(GRadient Ascent Pulse Engineering), the total number of time steps must
be fixed during the gradient ascent optimization process.

2 Background

2.1 Reinforcement Learning

In RL, there is an agent and an environment. The agent observes the envi-
ronment state, and takes an action based on some policy. This action drives
the environment to the next state, and a corresponding reward is given to
the agent. The goal of RL is to find the best policy that produces maximum
amount of total reward.

2.2 Deep Reinforcement Learning

RL has a long history before the appearance of artificial neural network. It
has been studied in the mathematical branch Dynamic programming for a

1

long time. In DRL, the only difference from RL is that the policy is pa-
rameterized by a deep Neural Network (NN) denoted by θ. Because math-
ematically a policy is a stochastic function that maps an observation to an
action:

at︸︷︷︸
agent action

∼ π θ︸︷︷︸
NN︸ ︷︷ ︸

stochastic policy parameterized by NN

(·| st︸︷︷︸
game state

) (1)

Before NN, the policies are usually completely stored as numerical values,
which means to store the best action for each possible observation. This is
huge amount of data and the reason why people use NN to approximate the
policy. Because from a mathematical point of view, NN is essentially the list
of coefficients of a highly nonlinear function, which can be optimized easily
to approximate the target function that requires much more numbers to be
represented.

2.3 The environment

Mathematically, the environment is a simple stochastic function (usually nat-
ural law) that maps the state and action from a time step to the next time
step. Note that this immediately indicates the Markovian property of the
agent-environment interaction process:

st+1 ∼ P︸︷︷︸
natural law

(·|st, at) (2)

2.4 The entropy-regularized return

In RL terminology, return is defined as the weighted summed of the re-
ward from each time step. And at each time step, apart from the re-
ward rt given by the environment, we also add the entropy (defined as
H(P) = E

x∼P
[− logP (x)]) of the policy. This encourages the agent to ex-

plore various possible actions and prevent it from getting stuck at some local
maximum, because a higher entropy means distributing probabilities among
more actions.

2

Rτ =
∞∑
t=0

(γ︸︷︷︸
discount

)t(rt + α H(π(·|st))︸ ︷︷ ︸
entropy of the policy

) (3)

As the above equations and explanations are sufficient for the main dis-
cussions, we will not discuss the use of Bellman equation and the Soft Actor-
Critic (SAC) algorithm in finding the best policy.

3 The experiment

3.1 The workflow

In the experiment we use the SAC algorithm from a package called stable-
baselines3 developed by German Aerospace Center Institute of Robotics and
Mechatronics. And we write the environment using the standard provided by
Elon Musk’s company OpenAI, i.e., write a environment class that inherits
from the OpenAI’s gym.Env class. Specifically, we will define the following:

• Action space and observation space

• System Hamiltonian and initial state

• A function called step that involves the following:

– The evolution of the system

– The reward and cost function

– The termination criterion

3.2 Action space and observation space

Let ψ be the state of the quantum system. Let f be the fidelity between
ψ and the target state |1〉. Let a be the action of the agent, which can be
either the control amplitude u or the gradient of it. Then the observation o
is chosen to be

o = [Re(ψ), Im(ψ), f, a] (4)

3

When a is the control amplitude, we have

a(1) = u (5)

H(t) = H0 + a0(t) x̂+ a1(t) ŷ (6)

When a is the gradient of the control amplitude we have

a(2) =
du

dt
(7)

H(t) = H0 + Clip[

∫
a0(t)dt] x̂+ Clip[

∫
a1(t)dt] ŷ (8)

The motivation to use a(2) is to limit the gradient of the control amplitude
u so that the control signals are smooth.

3.3 System Hamiltonian and initial state

The goal of the agent is to drive an initial quantum state to a final quantum
state through a series of action, we call this an episode. When an episode is
finished, the environment is reset with a new randomly chosen initial state.
Note that the target state should not change. In this way the agent will
learn to reach a target starting from different initial states. I have tried to
randomly reset both the initial and target states, but the agent was unable
to learn at all.

Two different systems have been tested. The first case is a simple quibit.
Let b be the annihilation operator for a qubit:

sys1 :


H0 = b†b

x̂ = b† + b

ŷ = i(b† − b)
(9)

The second case is a 3-level approximation to a Transmon with parameter
adopted from the DRAG paper:

4

sys2 :



H0 =
2∑
j=1

δj|j〉〈j|

x̂ =
2∑
j=1

λj
2

(|j〉〈j − 1|+ |j − 1〉〈j|)

ŷ =
2∑
j=1

λj
2
i(|j〉〈j − 1| − |j − 1〉〈j|)

(10)

with the following parameters

anharmonicity: ∆ = −0.4 GHz (11)

δ = [0,∆] (12)

λ = [1,
√

2] (13)

3.4 The evolution of the system

The evolution of the system is calculated using the qutip function mesolve.

3.5 The reward and cost function

Several cost functions has been tested:

c1 = 0 (14)

c2 = Θ(f − 0.9)〈|u|〉 (15)

c3 = (f − f0 + 1

2
)2〈|u|〉 (16)

where Θ() is the Heaviside step function, and f0 is the fidelity of the
initial state.

The use of c1 is to verify that without some cost function constraint, the
agent can successfully learn the task.

The use of c2 is motivated by the physical consideration that we want the
amplitude to drop to zero when the desired fidelity is achieved. By using the
Heaviside step function, when the fidelity is still small, we don’t penalize the
agent for producing high amplitude, once the fidelity reached a threshold of

5

0.9, which means the episode is about to end, we penalize the agent by the
mean absolute value of the control amplitude.

The use of c3 is motivated by the physical consideration that we want
the amplitude to be small both at the beginning and the end of the episode.
Therefore we use a quadratic function centered at the fidelity midpoint. Thus
at the beginning of the episode, there is a large weight for the amplitude cost.
In the middle of the episode, the weight for amplitude cost is small, and at
the end of the episode, the weight is large again.

The reward function is chosen to be the fidelity increase with cost function
subtracted from it:

r = ft − ft−1 − c (17)

3.6 The termination criterion

The episode terminates when the first or both conditions below are satisfied:

cd1 : f > ftarg (18)

cd2 : 〈|u|〉 < uterm (19)

3.7 The result

In the following table I show the experiment results for different combination
of systems, actions, cost functions and termination conditions. The
following abbreviation is used:

• S: The agent successfully learns.

• F: The agent fails to learn.

case system action cost termination condition result

1 sys1 a(1) c1 cd1 S
2 sys1 a(2) c1 cd1 S
3 sys1 a(2) c2 cd1 S
4 sys1 a(2) c2 cd1 and cd2 S

5 sys2 a(1) c1 cd1 S
6 sys2 a(2) c1 cd1 S
7 sys2 a(2) c2 cd1 S
8 sys2 a(2) c2 cd1 and cd2 F

6

3.8 Conclusion

For both sys1 and sys2 the difficulty to learn increases along the table. The
4th and 8th are the same conditions which we desire most. Although case 4
was successful, it took much longer than cases 1,2,3 to learn. This suggests
that cd2 is a much harder condition to learn. Since it requires the amplitude
to vanish exactly when the target fidelity is reached. I believe this is why case
8 has failed, because sys2 (dim=3) is more complicated than sys1 (dim=2).

I would also like to mention that although the cases that uses a(2) are
treated as successful, the bound for a(2) was not small enough. Because it is
observed that it becomes very hard to learn when the bound is small.

7

