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0.1 Transmon

0.1.1 LC oscillator

For a LC circuit, the Hamiltonian is:

Q2 (1)2
20 2L
(D, Q] =ih
introducing ladder operators:
a=Q —id’ at = Q' +id’
r— _Q r_ _®
Q= N = 2nZ
H =hw(a'a + 3) [a,al] =1
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0.1.2 the Josephson junction
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for small flux the Josephson junction behaves just like an inductor:
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0.1.3 Jaynes-Cummings model

1 ES
H = hwcaTa—l—hwaE (le){el = |g)(g]) + hQT
field o, th—’

atom

E =Ezpp(a+a') S=|e)lgl+|g){e]
= =

ot o_

where Z PF' stands for zero-point field. Under rotating wave approximation:

1
Hint = hQ§(aO'+ + ClTO',)

the possible transition is:

le,n) < |g,n+1)

the Hamiltonian in this basis is:

nhw, + 3hw, ThOV/n+1
TV +1  (n+ 1)hw, — $hw,

with eigenvalues:

1 1
Ei=(n+ é)hwc + §h V(Wa — we)? 4+ Q2(n + 1)

~
Q, Rabi frequency
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0.2 Controlling cavities

Notes from reading Controlling Error-Correctable Bosonic Qubits by Philip Reinhold (2019) Chap-

ter 2: Controlling cavities

0.2.1 Quantization of EM field

Scully (1.1.11) = J&EEIRp MWt Z 0P

2mhw 2mhw
Scully (1.1.27)  E=)_ e E,  age'®mx) L HC
— =~ —~—

polarization hwg /2e0V

where V is the volume of the resonator.

0.2.2 Changing frames

Y1 = Ut

Opbr = (0:U )bo + U(Obo) = (.U )vho + U(—iHrbo)

= —i [i(QU)Ut + U(HU")| 4y

i
Remark 1: Philip used 0,99 = —iH1y but had 9,1 = iHyn

0.2.3 Direct Control part 1

H = Zwkalak + G(t)Qk(CL;; + ak)
k doesn’t 1:),01( like E
Question 1: the last term doesn’t look like E

For a single mode: Question 2: What is his €2 and why is it gone

H= wa'a +e(t)(a' + a)

Hp, detuning term that we will murder

0.2.4 Rotating Frame: to kill H

U' _ e*iHit
P =

Result: H = wafa+ f(at,a) — H = f(ale ™", ae™?)
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https://rsl.yale.edu/sites/default/files/files/RSL_Theses/Reinhold-Thesis%20(1).pdf
https://rsl.yale.edu/sites/default/files/files/RSL_Theses/Reinhold-Thesis%20(1).pdf

0.2.5 Direct Control part 2

H = e(t)(a'e ™" 4 ae™") (22)
U' _ efifI:I(t)dt = eaaffoc*a (2?))

displacement operator Dg
Conclusion 1: Direct control using EM field can only produce coherent states, which are

basically displacements of the ground state in the phase space.

0.2.6 States
Coherent state: |a) = D,|0 = ¢ lol?/2 a—nn 24
@) = Do) > i 24
Fock /number state: (25)

0.2.7 Pauli Matrices

0,0y =10, 0,05 = 0;;1 + i€j0% (26)
(U-0)>=1— " =Tcosf+u-0isind (27)

Ryi(a) = PSP (28)

0.2.8 Resonant Jaynes-Cummings Model (without control)

o Q
H = wala+ %az —|—§(GTOL +aoy) (29)
Hy W—/
Hy
g S iy
HZE(G o_e + HC) A=w—w, (30)

Note: the transmon qubit acts as the atom in the textbook Jaynes-Cummings model
Question 3: Near (2.12) “the form of the drive is H; = @JI”

0.2.9 Dispersive Jaynes-Cummings Model (without control)

Q2
X = 29A
H = XaTa|e><e| (32)

H = H0+H1 + %CLTCLO'Z



0.2.10 Dispersive Jaynes-Cummings Model (with control)
Hen = xa'ale) (e| + [Q(t)o- + e(t)a + HC] (33)

0.2.11 The Toolkit Five

Question 4: By letting ¢ = —xt,) = € = 0, define entangling conditional phase C; =

eialae)el show Cr = Ilg)(g| + €™'*  |e)(e|. Therefore, C; = Z \E) (k| I, + > |k)(k|o.
H:Pcvcnfpodd k even kodd

Peven

Question 5: Show ¢'%'¢|q) = |¢i®q)
ei¢aTa’a> — ez’d)aTaD ’0> — €i¢a7aeaaT—a*a’0> 7;7 eei¢aaT—(ei¢a)*a’0>
6%
Question 6: “A narrow drive, centered around zero frequency in this rotating frame, applied
to the transmon, will induce Rabi oscillations if and only if the cavity contains zero photons,

this is a photon number selective qubit drive.”

Ry (0) = [n)(n]  Ro(6)  +(I.— [m){(n])1, (34)
——
definition 7?77
Question 7: In section (2.3.1) before Figure 2.4, time is not included in any discussion or

equation, why ¢ ~ 0.53us is special and what does it have do with the previous circuit?

0.2.12 Wigner Function

Wa(p) = %x<DaHDa) (35)
0.2.13 Bloch Sphere
|v) = cos g|0> + e sin g\l) (36)

Remark 2:

Are you saying that he defines the operator Ry(0) by R,(6) := cos ¢o, + sin ¢o,, 7 If this is a
definition, shouldn’t 6 appear on the RHS ?

Actually if my English understanding is correct, he is saying that the quantity cos ¢o, +sin ¢o,

is an axis, therefore a vector, but isn’t this quantity an operator/matrix ?
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Dzmitry: Yes it is a little bit strange to specify the rotation axis as a matrix, but it is
unfortunately common in quantum computing. If you use your equation Ry(«) := e'=2)%  These
notations mean that @ - ¢ = cos ¢ g, + sin ¢ o, and your rotation axis @ in the Block sphere has
components (cos ¢, sin ¢, 0). In other words, instead of specifying vector & he gives a product @ - o,
which can be used to find vector .

Me: Now I understand why she was talking about parameterization with only one parameter
¢, she defaulted § = 7. Is it ever necessary to perform a rotation around an axis that is not on
the z = 0 plane?

Speaking of this, I noticed that the rotation operator Ry(a) := ¢"=2)%% is time-independent,
unlike unitary operators of the form e*/* whose response speed is limited by energy. A rotation in
the Bloch sphere can be completed instantly! Is this why z = 0 is sufficient? We only care about

the initial and final states but not the rotation trajectory to get there?

0.2.14 Berry/Geometric phase

0.2.15 SNAP: selective number-dependent arbitrary phase

= > k) (K (37)

Ry(—7) = 39 = T cos g +u-o @smg =1u-0 1 =1i[cos ¢o, + sin ¢o, (38)
Ro(m) = €309 = T cos TW +u-0isin _TF =u-0 (—i) = —i[cos 0o, + sin 0o, | = —io, (39)
Ry(—m)Ro(7) = cos ¢0,0, + sin ¢po,0, = cos oI + sin (—io,) = e~ (40)
i l (=ig)"(J0)(0] = [)(A)" = ¢ [0)o[+ &2 |11 (41)
nl ~— —~—
n=0 berry’s phase berry’s phase
Therefore,
N N
k k i i
[T RS (mR () =D ek, 0)(k, 0] + ¢ [k, 1) (k, 1] (42)
k=0 k=0
= 5(=0)|0){0[ + 5(6)[1) (1] (43)



0.2.16 Quantum Optimal Control

H= Hy  +u) H,
~—
drift Hamiltonian control Hamiltonians

0.2.17 Quantum Gates
H = Ry(5)R.(r)

1 . 2mi

T
2
i) — yili) Yi = \/—an(wN)m N

Wwny =€eN
0.2.18 The Lindblad Master equation

Closed system: Neumann: p = —i[H, p]

1
Open system: Lindblad: p = —i[H, p] + [V,.pV.| — 5{p, VIV

(44)
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