

notes on Transmon quantum computer

ding ruiqi

June 22, 2020

Contents

0.1	Transmon	2
0.1.1	LC oscillator	2
0.1.2	the Josephson junction	2
0.1.3	Jaynes-Cummings model	3
0.2	Controlling cavities	4
0.2.1	Quantization of EM field	4
0.2.2	Changing frames	4
0.2.3	Direct Control part 1	4
0.2.4	Rotating Frame: to kill H_0	4
0.2.5	Direct Control part 2	5
0.2.6	States	5
0.2.7	Pauli Matrices	5
0.2.8	Resonant Jaynes-Cummings Model (without control)	5
0.2.9	Dispersive Jaynes-Cummings Model (without control)	5
0.2.10	Dispersive Jaynes-Cummings Model (with control)	6
0.2.11	The Toolkit Five	6
0.2.12	Wigner Function	6
0.2.13	Bloch Sphere	6
0.2.14	Berry/Geometric phase	7
0.2.15	SNAP: selective number-dependent arbitrary phase	7
0.2.16	Quantum Optimal Control	8
0.2.17	Quantum Gates	8
0.2.18	The Lindblad Master equation	8

0.1 Transmon

0.1.1 LC oscillator

For a LC circuit, the Hamiltonian is:

$$H = \frac{Q^2}{2C} + \frac{\Phi^2}{2L} \quad (1)$$

$$[\Phi, Q] = i\hbar \quad (2)$$

introducing ladder operators:

$$\begin{aligned} a &= Q' - i\Phi' & a^\dagger &= Q' + i\Phi' \\ Q' &= \frac{Q}{\sqrt{2\hbar/Z}} & \Phi' &= \frac{\Phi}{\sqrt{2\hbar Z}} \\ H &= \hbar\omega(a^\dagger a + \frac{1}{2}) & [a, a^\dagger] &= 1 \\ Z &= \omega L = \frac{1}{\omega C} = \sqrt{\frac{L}{C}} \end{aligned} \quad (3)$$

0.1.2 the Josephson junction

$$\phi = 2\pi \frac{\Phi}{\Phi_0} \quad \Phi_0 = \frac{h}{2e} \quad \text{flux quantum} \quad (4)$$

$$I = I_c \sin \phi \quad (5)$$

$$E = \int_0^t IV dt = \int_0^t I \frac{\Phi_0}{2\pi} \frac{d\phi}{dt} dt = \frac{\Phi_0}{2\pi} \int_0^\phi I_c \sin \phi d\phi = \underbrace{\frac{\Phi_0 I_c}{2\pi}}_{E_J} (1 - \cos \phi) \quad (6)$$

for small flux the Josephson junction behaves just like an inductor:

$$E \approx \frac{\Phi_0 I_c}{2\pi} \frac{\phi^2}{2} = \frac{I_c \pi}{\Phi_0} \Phi^2 \quad (7)$$

0.1.3 Jaynes-Cummings model

$$H = \underbrace{\hbar\omega_c a^\dagger a}_{\text{field}} + \underbrace{\hbar\omega_a \frac{1}{2} (|e\rangle\langle e| - |g\rangle\langle g|)}_{\underbrace{\sigma_z}_{\text{atom}}} + \underbrace{\hbar\Omega \frac{E_S}{2}}_{\text{int}} \quad (8)$$

$$E = E_{ZPF}(a + a^\dagger) \quad S = \underbrace{|e\rangle\langle g|}_{\sigma_+} + \underbrace{|g\rangle\langle e|}_{\sigma_-} \quad (9)$$

where ZPF stands for zero-point field. Under rotating wave approximation:

$$H_{\text{int}} = \hbar\Omega \frac{1}{2} (a\sigma_+ + a^\dagger\sigma_-) \quad (10)$$

the possible transition is:

$$|e, n\rangle \leftrightarrow |g, n+1\rangle \quad (11)$$

the Hamiltonian in this basis is:

$$H = \begin{pmatrix} n\hbar\omega_c + \frac{1}{2}\hbar\omega_a & \frac{1}{2}\hbar\Omega\sqrt{n+1} \\ \frac{1}{2}\hbar\Omega\sqrt{n+1} & (n+1)\hbar\omega_c - \frac{1}{2}\hbar\omega_a \end{pmatrix} \quad (12)$$

with eigenvalues:

$$E_\pm = (n + \frac{1}{2})\hbar\omega_c \pm \frac{1}{2}\hbar \underbrace{\sqrt{(\omega_a - \omega_c)^2 + \Omega^2(n+1)}}_{\Omega_n \quad \text{Rabi frequency}} \quad (13)$$

0.2 Controlling cavities

Notes from reading Controlling Error-Correctable Bosonic Qubits by Philip Reinhold (2019) Chapter 2: Controlling cavities

0.2.1 Quantization of EM field

$$\text{Scully (1.1.11)} \quad a = \frac{m\omega x + ip}{\sqrt{2m\hbar\omega}} \quad a^\dagger = \frac{m\omega x - ip}{\sqrt{2m\hbar\omega}} \quad (14)$$

$$\text{Scully (1.1.27)} \quad \mathbf{E} = \sum_{\mathbf{k}} \underbrace{\mathbf{e}_\mathbf{k}}_{\text{polarization}} \underbrace{\frac{E_\mathbf{k}}{\sqrt{\hbar\omega_\mathbf{k}/2\epsilon_0 V}}}_{\hat{a}_\mathbf{k} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega_\mathbf{k} t)}} + HC \quad (15)$$

where V is the volume of the resonator.

0.2.2 Changing frames

$$\psi_1 = U\psi_0 \quad (16)$$

$$\partial_t \psi_1 = (\partial_t U)\psi_0 + U(\partial_t \psi_0) = (\partial_t U)\psi_0 + U(-iH\psi_0) \quad (17)$$

$$= -i \underbrace{[i(\partial_t U)U^\dagger + U(HU^\dagger)]}_{\tilde{H}} \psi_1 \quad (18)$$

Remark 1: Philip used $\partial_t \psi_0 = -iH\psi_0$ but had $\partial_t \psi_1 = iH\psi_1$

0.2.3 Direct Control part 1

$$H = \sum_{\mathbf{k}} \omega_{\mathbf{k}} a_{\mathbf{k}}^\dagger a_{\mathbf{k}} + \underbrace{\epsilon(t)\Omega_{\mathbf{k}}(a_{\mathbf{k}}^\dagger + a_{\mathbf{k}})}_{\text{doesn't look like } \mathbf{E}} \quad (19)$$

Question 1: the last term doesn't look like \mathbf{E}

For a single mode: **Question 2:** What is his Ω and why is it gone

$$H = \underbrace{\omega a^\dagger a}_{H_0, \text{ detuning term that we will murder}} + \epsilon(t)(a^\dagger + a) \quad (20)$$

0.2.4 Rotating Frame: to kill H_0

$$U_i = e^{-iH_i t} \quad (21)$$

Result: $H = \omega a^\dagger a + f(a^\dagger, a) \longrightarrow \tilde{H} = f(a^\dagger e^{-i\omega t}, a e^{i\omega t})$

0.2.5 Direct Control part 2

$$\tilde{H} = \epsilon(t)(a^\dagger e^{-i\omega t} + a e^{i\omega t}) \quad (22)$$

$$\tilde{U} = e^{-i \int \tilde{H}(t) dt} \equiv \underbrace{e^{\alpha a^\dagger - \alpha^* a}}_{\text{displacement operator } D_\alpha} \quad (23)$$

Conclusion 1: Direct control using EM field can only produce coherent states, which are basically displacements of the ground state in the phase space.

0.2.6 States

$$\text{Coherent state: } |\alpha\rangle = D_\alpha|0\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \quad (24)$$

$$\text{Fock/number state:} \quad (25)$$

0.2.7 Pauli Matrices

$$\sigma_x \sigma_y = i \sigma_z \quad \sigma_i \sigma_j = \delta_{ij} I + i \epsilon_{ijk} \sigma_k \quad (26)$$

$$(\hat{\mathbf{u}} \cdot \boldsymbol{\sigma})^2 = I \longrightarrow e^{i\theta \hat{\mathbf{u}} \cdot \boldsymbol{\sigma}} = I \cos \theta + \hat{\mathbf{u}} \cdot \boldsymbol{\sigma} i \sin \theta \quad (27)$$

$$R_{\hat{\mathbf{u}}}(\alpha) := e^{i(-\frac{\alpha}{2}) \hat{\mathbf{u}} \cdot \boldsymbol{\sigma}} \quad (28)$$

0.2.8 Resonant Jaynes-Cummings Model (without control)

$$H = \underbrace{\omega a^\dagger a}_{H_0} + \underbrace{\frac{\omega_a}{2} \sigma_z}_{H_1} + \frac{\Omega}{2} (a^\dagger \sigma_- + a \sigma_+) \quad (29)$$

$$\tilde{H} = \frac{\Omega}{2} (a^\dagger \sigma_- e^{-i\Delta t} + H.C.) \quad \Delta := \omega - \omega_a \quad (30)$$

Note: the transmon qubit acts as the *atom* in the textbook Jaynes-Cummings model

Question 3: Near (2.12) “the form of the drive is $H_d = \frac{\Omega(t)}{2} \sigma_x$ ”

0.2.9 Dispersive Jaynes-Cummings Model (without control)

$$H = H_0 + H_1 + \frac{\chi}{2} a^\dagger a \sigma_z \quad \chi := \frac{\Omega^2}{2\Delta} \quad (31)$$

$$\tilde{H} = \chi a^\dagger a |e\rangle\langle e| \quad (32)$$

0.2.10 Dispersive Jaynes-Cummings Model (with control)

$$\tilde{H}_{\text{ctrl}} = \chi a^\dagger a |e\rangle\langle e| + [\Omega(t)\sigma_- + \epsilon(t)a + HC] \quad (33)$$

0.2.11 The Toolkit Five

Question 4: By letting $\phi = -\chi t, \Omega = \epsilon = 0$, define **entangling conditional phase** $C_\phi = e^{i\phi a^\dagger a |e\rangle\langle e|}$, show $C_\pi = I_c |g\rangle\langle g| + \underbrace{e^{i\pi a^\dagger a}}_{\Pi = P_{\text{even}} - P_{\text{odd}}} |e\rangle\langle e|$. Therefore, $C_\pi = \underbrace{\sum_{k \text{ even}} |k\rangle\langle k| I_q}_{P_{\text{even}}} + \underbrace{\sum_{k \text{ odd}} |k\rangle\langle k| \sigma_z}_{P_{\text{odd}}}$

Question 5: Show $e^{i\phi a^\dagger a} |\alpha\rangle = |e^{i\phi} \alpha\rangle$

$$e^{i\phi a^\dagger a} |\alpha\rangle = e^{i\phi a^\dagger a} D_\alpha |0\rangle = e^{i\phi a^\dagger a} e^{\alpha a^\dagger - \alpha^* a} |0\rangle \stackrel{??}{=} e^{i\phi \alpha a^\dagger - (e^{i\phi} \alpha)^* a} |0\rangle$$

Question 6: “A narrow drive, centered around zero frequency in this rotating frame, applied to the transmon, will induce Rabi oscillations **if and only if the cavity contains zero photons**, this is a photon number selective qubit drive.”

$$R_\phi^{(n)}(\theta) = |n\rangle\langle n| \underbrace{R_\phi(\theta)}_{\text{definition } ???} + (I_c - |n\rangle\langle n|) I_q \quad (34)$$

Question 7: In section (2.3.1) before Figure 2.4, **time** is not included in any discussion or equation, why $t \approx 0.53\mu s$ is special and what does it have do with the previous circuit?

0.2.12 Wigner Function

$$W_\alpha(\rho) = \frac{2}{\pi} x \langle D_{-\alpha} \Pi D_\alpha \rangle \quad (35)$$

0.2.13 Bloch Sphere

$$|\psi\rangle = \cos \frac{\theta}{2} |0\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle \quad (36)$$

Remark 2:

Are you saying that he defines the operator $R_\phi(\theta)$ by $R_\phi(\theta) := \cos \phi \sigma_x + \sin \phi \sigma_y$? If this is a definition, shouldn't θ appear on the RHS ?

Actually if my English understanding is correct, he is saying that the quantity $\cos \phi \sigma_x + \sin \phi \sigma_y$ is **an axis**, therefore a vector, but isn't this quantity an operator/matrix ?

Dzmitry: Yes it is a little bit strange to specify the rotation axis as a matrix, but it is unfortunately common in quantum computing. If you use your equation $R_{\hat{\mathbf{u}}}(\alpha) := e^{i(-\frac{\alpha}{2})\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}}$. These notations mean that $\hat{\mathbf{u}} \cdot \boldsymbol{\sigma} = \cos \phi \boldsymbol{\sigma}_x + \sin \phi \boldsymbol{\sigma}_y$, and your rotation axis $\hat{\mathbf{u}}$ in the Bloch sphere has components $(\cos \phi, \sin \phi, 0)$. In other words, instead of specifying vector $\hat{\mathbf{u}}$ he gives a product $\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}$, which can be used to find vector $\hat{\mathbf{u}}$.

Me: Now I understand why she was talking about parameterization with only one parameter ϕ , she defaulted $\theta = \frac{\pi}{2}$. Is it ever necessary to perform a rotation around an axis that is not on the $z = 0$ plane?

Speaking of this, I noticed that the rotation operator $R_{\hat{\mathbf{u}}}(\alpha) := e^{i(-\frac{\alpha}{2})\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}}$ is time-independent, unlike unitary operators of the form e^{iHt} whose response speed is limited by energy. A rotation in the Bloch sphere can be completed instantly! Is this why $z = 0$ is sufficient? We only care about the initial and final states but not the rotation trajectory to get there?

0.2.14 Berry/Geometric phase

0.2.15 SNAP: selective number-dependent arbitrary phase

$$S(\boldsymbol{\theta}) = \sum_k e^{i\theta_k} |k\rangle\langle k| \quad (37)$$

$$R_\phi(-\pi) = e^{i(-\frac{-\pi}{2})\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}} = I \cos \frac{\pi}{2} + \hat{\mathbf{u}} \cdot \boldsymbol{\sigma} i \sin \frac{\pi}{2} = \hat{\mathbf{u}} \cdot \boldsymbol{\sigma} i = i[\cos \phi \sigma_x + \sin \phi \sigma_y] \quad (38)$$

$$R_0(\pi) = e^{i(-\frac{\pi}{2})\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}} = I \cos \frac{-\pi}{2} + \hat{\mathbf{u}} \cdot \boldsymbol{\sigma} i \sin \frac{-\pi}{2} = \hat{\mathbf{u}} \cdot \boldsymbol{\sigma} (-i) = -i[\cos 0 \sigma_x + \sin 0 \sigma_y] = -i\sigma_x \quad (39)$$

$$R_\phi(-\pi)R_0(\pi) = \cos \phi \sigma_x \sigma_x + \sin \phi \sigma_y \sigma_x = \cos \phi I + \sin \phi (-i\sigma_z) = e^{i(-\phi)\sigma_z} \quad (40)$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (-i\phi)^n (|0\rangle\langle 0| - |1\rangle\langle 1|)^n = \underbrace{e^{-i\phi}}_{\text{berry's phase}} |0\rangle\langle 0| + \underbrace{e^{i\phi}}_{\text{berry's phase}} |1\rangle\langle 1| \quad (41)$$

Therefore,

$$\prod_{k=0}^N R_{\phi_k}^{(k)}(-\pi) R_0^{(k)}(\pi) = \sum_{k=0}^N e^{-i\phi_k} |k, 0\rangle\langle k, 0| + e^{i\phi_k} |k, 1\rangle\langle k, 1| \quad (42)$$

$$= S(-\boldsymbol{\theta})|0\rangle\langle 0| + S(\boldsymbol{\theta})|1\rangle\langle 1| \quad (43)$$

0.2.16 Quantum Optimal Control

$$H = \underbrace{H_0}_{\text{drift Hamiltonian}} + u_j(t) \underbrace{H_j}_{\text{control Hamiltonians}} \quad (44)$$

0.2.17 Quantum Gates

$$H = R_y\left(\frac{\pi}{2}\right)R_z(\pi) \quad (45)$$

$$\text{QFT: } x_i|i\rangle \rightarrow y_i|i\rangle \quad y_i = \frac{1}{\sqrt{N}}x_n(\omega_N)^{ni} \quad \omega_N = e^{\frac{2\pi i}{N}} \quad (46)$$

0.2.18 The Lindblad Master equation

$$\text{Closed system: Neumann: } \dot{\rho} = -i[H, \rho] \quad (47)$$

$$\text{Open system: Lindblad: } \dot{\rho} = -i[H, \rho] + [V_n \rho V_n^\dagger - \frac{1}{2}\{\rho, V_n^\dagger V_n\}] \quad (48)$$