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0.1 Transmon

0.1.1 LC oscillator

For a LC circuit, the Hamiltonian is:

H =
Q2

2C
+

Φ2

2L
(1)

[Φ, Q] = ih̄ (2)

introducing ladder operators:

a = Q′ − iΦ′ a† = Q′ + iΦ′

Q′ = Q√
2h̄/Z

Φ′ = Φ√
2h̄Z

H = h̄ω(a†a+ 1
2
) [a, a†] = 1

Z = ωL = 1
ωC

=
√

L
C

(3)

0.1.2 the Josephson junction

φ = 2π
Φ

Φ0

Φ0 =
h

2e
flux quantum (4)

I = Ic sinφ (5)

E =

∫ t

0

IV dt =

∫ t

0

I
Φ0

2π

dφ

dt
dt =

Φ0

2π

∫ φ

0

Ic sinφ dφ =
Φ0Ic
2π︸ ︷︷ ︸
EJ

(1− cosφ) (6)

for small flux the Josephson junction behaves just like an inductor:

E ≈ Φ0Ic
2π

φ2

2
=
Icπ

Φ0

Φ2 (7)
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0.1.3 Jaynes-Cummings model

H = h̄ωca
†a︸ ︷︷ ︸

field

+ h̄ωa
1

2
(|e〉〈e| − |g〉〈g|)︸ ︷︷ ︸

σz︸ ︷︷ ︸
atom

+ h̄Ω
ES

2︸ ︷︷ ︸
int

(8)

E = EZPF (a+ a†) S = |e〉〈g|︸ ︷︷ ︸
σ+

+ |g〉〈e|︸ ︷︷ ︸
σ−

(9)

where ZPF stands for zero-point field. Under rotating wave approximation:

Hint = h̄Ω
1

2
(aσ+ + a†σ−) (10)

the possible transition is:

|e, n〉 ↔ |g, n+ 1〉 (11)

the Hamiltonian in this basis is:

H =

nh̄ωc + 1
2
h̄ωa

1
2
h̄Ω
√
n+ 1

1
2
h̄Ω
√
n+ 1 (n+ 1)h̄ωc − 1

2
h̄ωa

 (12)

with eigenvalues:

E± = (n+
1

2
)h̄ωc ±

1

2
h̄
√

(ωa − ωc)2 + Ω2(n+ 1)︸ ︷︷ ︸
Ωn Rabi frequency

(13)
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0.2 Controlling cavities

Notes from reading Controlling Error-Correctable Bosonic Qubits by Philip Reinhold (2019) Chap-

ter 2: Controlling cavities

0.2.1 Quantization of EM field

Scully (1.1.11) a =
mωx+ ip√

2mh̄ω
a† =

mωx− ip√
2mh̄ω

(14)

Scully (1.1.27) EEE =
∑
kkk

eeekkk︸︷︷︸
polarization

Ekkk︸︷︷︸√
h̄ωkkk/2ε0V

âkkke
i(kkk·rrr−ωkkkt) +HC (15)

where V is the volume of the resonator.

0.2.2 Changing frames

ψ1 = Uψ0 (16)

∂tψ1 = (∂tU)ψ0 + U(∂tψ0) = (∂tU)ψ0 + U(−iHψ0) (17)

= −i [i(∂tU)U † + U(HU †)]︸ ︷︷ ︸
H̃

ψ1 (18)

Remark 1: Philip used ∂tψ0 = −iHψ0 but had ∂tψ1 = iHψ1

0.2.3 Direct Control part 1

H =
∑
kkk

ωkkka
†
kkkakkk + ε(t)Ωkkk(a

†
kkk + akkk)︸ ︷︷ ︸

doesn’t look like EEE

(19)

Question 1: the last term doesn’t look like EEE

For a single mode: Question 2: What is his Ω and why is it gone

H = ωa†a︸︷︷︸
H0, detuning term that we will murder

+ε(t)(a† + a) (20)

0.2.4 Rotating Frame: to kill H0

Ui = e−iHit (21)

Result: H = ωa†a+ f(a†, a) −→ H̃ = f(a†e−iωt, aeiωt)
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0.2.5 Direct Control part 2

H̃ = ε(t)(a†e−iωt + aeiωt) (22)

Ũ = e−i
∫
H̃(t)dt ≡ eαa

†−α∗a︸ ︷︷ ︸
displacement operator Dα

(23)

Conclusion 1: Direct control using EM field can only produce coherent states, which are

basically displacements of the ground state in the phase space.

0.2.6 States

Coherent state: |α〉 = Dα|0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (24)

Fock/number state: (25)

0.2.7 Pauli Matrices

σxσy = iσz σiσj = δijI + iεijkσk (26)

(ûuu · σσσ)2 = I −→ eiθûuu·σσσ = I cos θ + ûuu · σσσ i sin θ (27)

Rûuu(α) := ei(−
α
2

)ûuu·σσσ (28)

0.2.8 Resonant Jaynes-Cummings Model (without control)

H = ωa†a︸︷︷︸
H0

+
ωa
2
σz︸ ︷︷ ︸

H1

+
Ω

2
(a†σ− + aσ+) (29)

H̃ =
Ω

2
(a†σ−e

−i∆)t +HC) ∆ := ω − ωa (30)

Note: the transmon qubit acts as the atom in the textbook Jaynes-Cummings model

Question 3: Near (2.12) “the form of the drive is Hd = Ω(t)
2
σx”

0.2.9 Dispersive Jaynes-Cummings Model (without control)

H = H0 +H1 +
χ

2
a†aσz χ :=

Ω2

2∆
(31)

H̃ = χa†a|e〉〈e| (32)
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0.2.10 Dispersive Jaynes-Cummings Model (with control)

H̃ctrl = χa†a|e〉〈e|+ [Ω(t)σ− + ε(t)a+HC] (33)

0.2.11 The Toolkit Five

Question 4: By letting φ = −χt,Ω = ε = 0, define entangling conditional phase Cφ =

eiφ a
†a|e〉〈e|, show Cπ = Ic|g〉〈g|+ eiπa

†a︸ ︷︷ ︸
Π=Peven−Podd

|e〉〈e|. Therefore, Cπ =
∑
k even

|k〉〈k|︸ ︷︷ ︸
Peven

Iq +
∑
k odd

|k〉〈k|σz

Question 5: Show eiφa
†a|α〉 = |eiφα〉

eiφa
†a|α〉 = eiφa

†aDα|0〉 = eiφa
†aeαa

†−α∗a|0〉 ???
= ee

iφαa†−(eiφα)∗a|0〉

Question 6: “A narrow drive, centered around zero frequency in this rotating frame, applied

to the transmon, will induce Rabi oscillations if and only if the cavity contains zero photons,

this is a photon number selective qubit drive.”

R
(n)
φ (θ) = |n〉〈n| Rφ(θ)︸ ︷︷ ︸

definition ???

+(Ic − |n〉〈n|)Iq (34)

Question 7: In section (2.3.1) before Figure 2.4, time is not included in any discussion or

equation, why t ≈ 0.53µs is special and what does it have do with the previous circuit?

0.2.12 Wigner Function

Wα(ρ) =
2

π
x〈D−αΠDα〉 (35)

0.2.13 Bloch Sphere

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (36)

Remark 2:

Are you saying that he defines the operator Rφ(θ) by Rφ(θ) := cosφσx + sinφσy ? If this is a

definition, shouldn’t θ appear on the RHS ?

Actually if my English understanding is correct, he is saying that the quantity cosφσx+sinφσy

is an axis, therefore a vector, but isn’t this quantity an operator/matrix ?
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Dzmitry: Yes it is a little bit strange to specify the rotation axis as a matrix, but it is

unfortunately common in quantum computing. If you use your equation Rûuu(α) := ei(−
α
2

)ûuu·σσσ. These

notations mean that ûuu · σσσ = cosφ σσσx + sinφ σσσy, and your rotation axis ûuu in the Block sphere has

components (cosφ, sinφ, 0). In other words, instead of specifying vector ûuu he gives a product ûuu ·σσσ,

which can be used to find vector ûuu.

Me: Now I understand why she was talking about parameterization with only one parameter

φ, she defaulted θ = π
2
. Is it ever necessary to perform a rotation around an axis that is not on

the z = 0 plane?

Speaking of this, I noticed that the rotation operator Rûuu(α) := ei(−
α
2

)ûuu·σσσ is time-independent,

unlike unitary operators of the form eiHt whose response speed is limited by energy. A rotation in

the Bloch sphere can be completed instantly! Is this why z = 0 is sufficient? We only care about

the initial and final states but not the rotation trajectory to get there?

0.2.14 Berry/Geometric phase

0.2.15 SNAP: selective number-dependent arbitrary phase

S(θθθ) =
∑
k

eiθk |k〉〈k| (37)

Rφ(−π) = ei(−
−π
2

)ûuu·σσσ = I cos
π

2
+ ûuu · σσσ i sin

π

2
= ûuu · σσσ i = i[cosφσx + sinφσy] (38)

R0(π) = ei(−
π
2

)ûuu·σσσ = I cos
−π
2

+ ûuu · σσσ i sin
−π
2

= ûuu · σσσ (−i) = −i[cos 0σx + sin 0σy] = −iσx (39)

Rφ(−π)R0(π) = cosφσxσx + sinφσyσx = cosφI + sinφ(−iσz) = ei(−φ)σz (40)

=
∞∑
n=0

1

n!
(−iφ)n(|0〉〈0| − |1〉〈1|)n = e−iφ︸︷︷︸

berry’s phase

|0〉〈0|+ eiφ︸︷︷︸
berry’s phase

|1〉〈1| (41)

Therefore,

N∏
k=0

R
(k)
φk

(−π)R
(k)
0 (π) =

N∑
k=0

e−iφk |k, 0〉〈k, 0|+ eiφk |k, 1〉〈k, 1| (42)

= S(−θθθ)|0〉〈0|+ S(θθθ)|1〉〈1| (43)
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0.2.16 Quantum Optimal Control

H = H0︸︷︷︸
drift Hamiltonian

+uj(t) Hj︸︷︷︸
control Hamiltonians

(44)

0.2.17 Quantum Gates

H = Ry(
π

2
)Rz(π) (45)

QFT: xi|i〉 → yi|i〉 yi =
1√
N
xn(ωN)ni ωN = e

2πi
N (46)

0.2.18 The Lindblad Master equation

Closed system: Neumann: ρ̇ = −i[H, ρ] (47)

Open system: Lindblad: ρ̇ = −i[H, ρ] + [VnρV
†
n −

1

2
{ρ, V †nVn}] (48)
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