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Abstract

This thesis studies the Density Potential Functional Theory (DPFT) introduced by Julian Schwinger

and Berge Englert. Its application on spin polarized Fermi gas with magnetic dipole-dipole inter-

action is studied under the Thomas Fermi (TF) approximation in both position and momentum

space. The main new contribution is developing my own orbital free (OF) DPFT code and re-

leasing it as an official python packaged for interested users. My code used the state of the art

Machine Learning library PyTorch to achieve multi-GPU acceleration. The magnetic dipole-dipole

interaction has been implemented in 2D and 3D, the result of which agrees well with physical ex-

pectation. The accuracy of OF-DPFT code has been compared with custom Kohn Sham DFT

code. The state of the art DFT software VASP has been studied in order to adopt its strengths

into my own code in the future development. Another innovation that applies a low pass filter on

TF density has shown enhanced accuracy and will be further explored in the future.
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Chapter 1

Density functional theory

1.1 Hohenberg Kohn Theorem

We can use the standard textbook Variational Principle to find the ground state energy EGS of a

system:

EGS = min
Ψ

⟨Ψ|H|Ψ⟩ (1.1)

However, for a many particle system, the above many particle wave function has the form

Ψ(rrr1, rrr2, ...rrrN) (1.2)

Where rrri is the position of the ith electron. This is terrible for practical calculation: consider

10 electrons and a 10× 10× 10 space grid. And suppose that a complex number takes 10 bytes of

storage. Then the wave function alone takes a storage of 103·10 · 10 bytes = 1022 GB. To save us

from this disaster, the Hohenberg Kohn Variational Principle1 states that the ground state energy

is the minimum of some functional of the spatial density n(rrr), it is natural to call this functional

E[n(rrr)]:

EGS = min
n
E[n(rrr)] (1.3)

Now instead of the many particle wave function, we only need to find the density n(rrr). For the

same system, we now need of storage of: 103 · 5 bytes = 5 GB, where the 5 bytes is because the

density is real instead of complex. More specifically, we made the following progress:

6



Ψ(rrr1, rrr2, ...rrrN) to n(rrr) (1.4)

RRR3N → CCC to RRR3 → R (1.5)

1.2 Finding the Energy functional

The Hohenberg Kohn Theorem may sound powerful, but we do not know the exact form of E[n],

unlike wave functions that can be calculated using the Schrodinger equation. Therefore over the

past decades, people have been trying to find approximations to the energy functional, which is

naturally divided into three parts: the kinetic energy Tkin[n], the energy Eext[n] from some external

potential and the interaction energy Eint[n] between particles.

E[n] = Tkin[n] + Eext[n] + Eint[n] (1.6)

Note that the famous exchange-correlation energy Exc[n] is considered as part of the interaction

energy Eint[n]:

Eint[n] = Edirect[n] + Exc[n] (1.7)

Exc[n] = Eexchange[n] + Ecorrelation[n] (1.8)

The direct interaction energy Edirect[n] is the part of interaction energy we know exactly such

as Hartree (Coulomb) or dipole-dipole interaction. The unknown exchange-correlation energy can

be modelled using the uniform electron gas, known as the local density approximation (LDA). The

exchange energy for LDA is derived by Dirac,2

ELDA
x [n] = −3

4
(
3

π
)1/3

∫
drrr n4/3 (1.9)

We will use Dirac’s approach again later in a different form. In practical DFT programs, hybrid

functionals that combine LDA with other approximations are used. For example, a popular one is

B3LYP3 :
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EB3LYP
x = 0.8ELDA

x + 0.2EHF
x + 0.72∆EB88

x (1.10)

EB3LYP
c = 0.19EVWN3

c + 0.81ELYP
c (1.11)

The kinetic energy functional T [n] is the most important term since it usually has the same

order as the total energy. Thus it has been the term that people try to approximate closely the

most. In fact, it is where Orbital free formalism and Kohn Sham4 formalism differ from each other.

1.3 Orbital free formalism

The starting point for approximation to T [n] in Orbital free formalism is the Thomas-Fermi5,6

model. Consider uniform electron gas, then the density in position space can be calculated by

integrating the phase space density η(µ−H(ppp,rrr)) in momentum space. Where η is the Heaviside

unit step function and, µ is the chemical potential. The phase space density is 1 when µ−H(ppp,rrr) >

0 and 0 otherwise. This leads to the definition of Fermi momentum pF : the maximum magnitude

of momentum ppp that satisfies µ−H(ppp,rrr) > 0

nTF(rrr) = 2

∫
dppp η(µ−H(ppp,rrr))

1

(2πh̄)3
(1.12)

= 2 · 4π
3
p3F (rrr) ·

1

(2πh̄)3
=

1

3π2
k3F (rrr) (1.13)

Where the factor 2 is spin multiplicity for Fermions. Then the kinetic energy T [n] can be

represented using spatial density as follows:

TTF[n] =

∫
drrrdppp

ppp2

2m
=

∫
drrr 4π

1

2m

1

5
p5F (1.14)

=

∫
drrr 4π

1

2m

1

5
(
3h3

8π
n)5/3 ≡ CTF

∫
drrr n5/3 (1.15)

The above kinetic energy functional is exact only for a uniform (density) system such as met-

als. For a more general non-uniform system correction terms need to be added. Since the non-

uniformity can be characterized by the gradient of the density, there exists a family of corrections

known as the gradient expansions. It is worth to mention that one paper by Burke et al.7 called

Generalized gradient approximation made simple has been cited 112,438 times, probability the
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most cited paper in the history of Physics. A simple example of the gradient expansion is the

TF-Weizsacker8 functional:

TTFW[n] = TTF[n] +
1

8

∫
drrr

|∇n|2

n
(1.16)

Apart from the gradient expansions, another type of non-local correction is the convolution of

density over some kernel. In the state of the art Orbital free DFT applications, the Wang-Teter9

functional is commonly used:

TWT[n] = CTF

∫
drrradrrrb n(rrra)

5/6 W (rrra − rrrb)︸ ︷︷ ︸
convolution kernel

n(rrrb)
5/6 (1.17)

The main computational cost in Orbital free formalism is using the fast Fourier transform (FFT)

to evaluate the kinetic energy functional and Coulomb interaction. However, conventional FFT

algorithms face parallelization limitations due to core to core communication. Luckily, recently

the Emily Carter10 group designed a small-box FFT (SBFFT) algorithm that overcame this issue,

achieving a state of the art result: calculating one million lithium atoms in around 2 minutes time.

1.4 Kohn Sham formalism

In Orbital free formalism, the kinetic energy functional is not accurate enough even with various

corrections. We know that solving Schrodinger equations to get wave functions gives us the exact

result, maybe we can somehow combine the Schrodinger approach and Density functional theory?

Influenced by Hartree Fock method,11 Kohn and Sham4 first came up with this idea and reintro-

duced the use of wave functions known as Kohn Sham orbitals, the main technique of which is to

convert many body wave function that depends on N particle coordinates into N wave functions

of one particle coordinates:

Ψ(rrr1, rrr2, ...rrrN) to {ψ1(rrr), ψ2(rrr), ...ψN(rrr)} (1.18)

RRR3N → CCC to RRR3 → N ×CCC (1.19)

This approach has proven to be more accurate than Orbital free formalism, but computationally

more expensive for large particle systems since the cost scales with particle number. In Kohn Sham

formalism the energy functional can be expressed as:
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E[n] = Tkin[ψi(rrr)] + Eext[n] + Eint[n] (1.20)

In fact, not only the kinetic energy term, but also the interaction energy, can be improved by

calculation involving the Kohn Sham orbitals. We are not going into further details here. The

Kohn Sham orbitals {ψi(rrr)} are calculated using the single particle Schrodinger equation (h̄ = 1):

[
(i∇)2

2
+ Vext[n] + Vint[n]

]
ψi(rrr) = ϵiψi(rrr) (1.21)

And from the Kohn Sham orbitals we can calculate the density:

n(rrr) =
N∑
i

|ψi(rrr)|2 (1.22)
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Chapter 2

Density potential functional theory

As the name suggests, in Density potential functional theory, we want to convert the total energy

functional E[n] from the Hohenberg Kohn Theorem, which is a functional of density only, to a

functional of both density and the so-called effective potential using Legendre transformation. This

idea is first introduced by Julian Schwinger,12 and promoted by Berge Englert.13–16 It is regarded

as the most important contribution of Julian Schwinger to the field of density functional theory.

2.1 Note: notation convention

In previous works by Berge Englert, the convention is to use n(rrr) to represent position space

density, and use ρ(ppp) to represent momentum space density. However, in this report the symbol

n and ρ are interchangeably used, this is in order to emphasize the profound equivalency and

connection between position and momentum density. The meanings should be easily understood

from the context.

2.2 Position space formalism

As a first step we want to incorporate the conservation of particles into the formalism. Therefore

it is convenient to use the Lagrange multiplier µ, which physically is the chemical potential, to

add the particle number constraint to the energy functional:

E[n, µ] = Ekin +

∫
drrr Vextn+ Eint[n] + µ(N −

∫
drrr n) (2.1)
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The second step is to introduce a Legendre transformation. We define the effective potential V

as the functional derivative of the kinetic energy functional and add the constant µ to it, so that

it acts as an conjugate variable:

V := µ− δEkin

δn
(2.2)

Then the Legendre transform of Ekin is:

ELGD
kin := Ekin −

∫
drrr n

δEkin

δn
= Ekin +

∫
drrr n · (V − µ) (2.3)

This means that now ELGD
kin is a functional of the conjugate variable (V − µ):

ELGD
kin = ELGD

kin [
δEkin

δn
] = ELGD

kin [V − µ] (2.4)

Now one just have to express the total energy E[n] using ELGD
kin :

E = Ekin[n] +

∫
drrr Vextn+ Eint[n] + µ(N −

∫
drrr n) (2.5)

= ELGD
kin [V − µ] +

∫
drrr (Vext − V )n+ Eint[n] + µN (2.6)

In summary, we have successfully made the conversion:

E[n] → E[n, µ] → E[n, µ,
δEkin

δn
] = E[n, µ, V ] (2.7)

The variation of E with respect to the three variables n, µ, V gives

δE[n, µ, V ]

δn
= 0 = Vext − V +

δEint[n]

δn
(2.8)

δE[n, µ, V ]

δµ
= 0 =

δELGD
kin [V − µ]

δµ
+N (2.9)

δE[n, µ, V ]

δV
= 0 =

δELGD
kin [V − µ]

δV
− n (2.10)
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2.3 Momentum space formalism

The momentum space formalism is essentially the same, which is based on Henderson’s17 proof of

the momentum version of Hohenberg Kohn Theorem. The energy functional is:

E[n, µ] =

∫
dppp Tkinn+ Eext + Eint[n] + µ(N −

∫
dppp n) (2.11)

In the Legendre transformation, we define the effective kinetic energy T as the functional

derivative of the external potential energy functional and add the constant µ to it, so that it acts

as an conjugate variable:

T := µ− δEext

δn
(2.12)

Then the Legendre transform of Eext is:

ELGD
ext := Eext −

∫
dppp n

δEext

δn
= Eext +

∫
dppp n · (T − µ) (2.13)

This means ELGD
ext is a functional of the conjugate variable (T − µ):

ELGD
ext = ELGD

ext [
δEext

δn
] = ELGD

ext [T − µ] (2.14)

Now one just have to express the total energy E[n] using ELGD
ext :

E =

∫
dppp Tkinn+ Eext + Eint[n] + µ(N −

∫
dppp n) (2.15)

=

∫
dppp (Tkin − T )n+ ELGD

ext + Eint[n] + µN (2.16)

In summary, we have successfully made the conversion:

E[n] → E[n, µ] → E[n, µ,
δEext

δn
] = E[n, µ, T ] (2.17)

The variation of E with respect to the three variables n, µ, T gives

13



δE[n, µ, T ]

δn
= 0 = Tkin − T +

δEint[n]

δn
(2.18)

δE[n, µ, T ]

δµ
= 0 =

δELGD
ext [T − µ]

δµ
+N (2.19)

δE[n, µ, T ]

δT
= 0 =

δELGD
ext [T − µ]

δT
− n (2.20)

2.4 The significance of DPFT

In summary, using Legendre transform we turned the total energy functional of density only to

a functional of both density and the conjugate variable of kinetic energy / external potential

energy.

• In position space, we take the Legendre transform of the kinetic energy functional and call

it the effective potential.

• In momentum space, we take the Legendre transform of the external potential energy func-

tional and call it the effective kinetic energy.

The significance of DPFT is that, for a long time people have been trying to find approximations

of various energies and express them in terms of density. For example the Thomas-Fermi kinetic

energy

TTF[n] = CTF

∫
drrr n5/3 (2.21)

These approximations are hard to find. But in DPFT this may not be a problem, since density

and potential have equal footing now, we can express density in terms various energies instead:

n(rrr) = −δE
LGD
kin [V − µ]

δV (rrr)
(2.22)

n(ppp) = −δE
LGD
ext [T − µ]

δ(ppp)
(2.23)

Various explorations in this direction have been made by my group.18,19 The most recent one of

which19 uses Suzuki-Trotter approximation.20 The main idea is to start with Kohn Sham density

14



n(rrr) = 2⟨rrr|η(µ−H(PPP ,RRR))|rrr⟩, where η() is the Heaviside step function, µ is the chemical potential,

H(PPP ,RRR) is the single particle Hamiltonian and |rrr⟩ is the eigenvector of position operator RRR. We

can rewrite the density using Fourier transform:

n(rrr) = 2⟨rrr|
∫ ∞

−∞

ds

2π
eis[µ−H(PPP ,RRR)]η̃(s)|rrr⟩ (2.24)

= 2

∫ ∞

−∞

ds

2π
eisµη̃(s)⟨rrr| e−isH(PPP ,RRR)︸ ︷︷ ︸

U(s)

|rrr⟩ (2.25)

Thus the problem of finding approximation to n(rrr) has been converted to finding the approximation

to the unitary evolution operator U(s), in which the Suzuki-Trotter approximation can be applied.
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Chapter 3

Spin polarized Fermi gas with magnetic

dipole-dipole interaction

In this chapter we will apply the Density Potential functional theory and derive the various energy

functionals for a specific system, namely spin polarized Fermi gas with magnetic dipole-dipole

interaction. Two approximations are used: Dirac2’s approximation and Thomas Fermi approxi-

mation. We begin by introducing the Wigner function, which can be used to derive various density

matrices.

3.1 Wigner function and densities

We denoted the momentum space one-particle density by ρ(ppp), it is normalized to the total particle

number N =
∫
dppp ρ(ppp). Consider the one particle Wigner function ν(rrr,ppp) without a specific form

at the moment, which will later be approximated by the Thomas-Fermi model. We can use the

Wigner function to express various density variables:

• Spatial one particle density matrix. In n(1) below, we use the superscript (1) to denote one

particle. In rrr1 below, we use subscript 1 to denote position 1 of the particle:

n(1)(rrr1;rrr2) =

∫
dppp

(2πh̄)3
ν(
rrr1 + rrr2

2
, ppp)ei

ppp
h̄
·(rrr1−rrr2) (3.1)

• Spatial one particle density.

n(rrr) = n(1)(rrr;rrr) =

∫
dppp

(2πh̄)3
ν(rrr,ppp) (3.2)
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• Momentum space one particle density.

ρ(ppp) =

∫
drrr

(2πh̄)3
ν(rrr,ppp) (3.3)

3.2 Dirac’s approximation for two particle density matrix

The two particle density matrix can be written down using an approximation introduced by Dirac.2

In rrr1a below, we use subscripts 1a to denote position 1 of particle (a) :

n(2)(rrr1a, rrr1b;rrr2a, rrr2b) = n(1)(rrr1a;rrr2a) n
(1)(rrr1b;rrr2b)− n(1)(rrr1a;rrr1b) n

(1)(rrr2b;rrr2a) (3.4)

Quite intuitively, the above expression accounts for the effect of exchanging positions of the

two particles. For our system, particle (a) can only be at one place, thus rrr1a = rrr2a and we can drop

the number subscripts 1, 2 that represents position. The resulting two terms can be interpreted as

so called direct term and exchange term:

n(2)(rrra, rrrb;rrra, rrrb) = n(1)(rrra;rrra) n
(1)(rrrb;rrrb)− n(1)(rrra;rrrb) n

(1)(rrrb;rrra) (3.5)

= n(rrra) n(rrrb)︸ ︷︷ ︸
direct term

−n(1)(rrra;rrrb) n
(1)(rrrb;rrra)︸ ︷︷ ︸

exchange term

(3.6)

3.3 Thomas Fermi approximation for Wigner function

The Wigner function can be approximated by the Thomas Fermi approximation, which is the

simplest approximation used in orbital free DFT, but it serves as the basis for further modifications.

The following expressions are essentially the same as equation [1.13], except we have used a spin

multiplicity of 1 instead of 2, since we will be discussing about spin-polarized Fermions. For

position space, we have:

ν(rrr,ppp) = η(h̄[6π2n(rrr)]1/3 − p) (3.7)

Where η is the Heaviside unit step function and we will be using p ≡ |ppp|. In analogy, we have

in momentum space:

ν(rrr,ppp) = η(h̄[6π2ρ(ppp)]1/3 − r) (3.8)
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3.4 Energy functionals in momentum space

3.4.1 Kinetic energy

Unlike in position space, the kinetic energy can be easily expressed in momentum space:

Ekin =

∫
dppp

ppp2

2M
ρ(ppp) (3.9)

Using the following formula for functional derivative originated from Euler–Lagrange equation

F [n] =

∫
f(rrr, n(rrr),∇n(rrr)) drrr (3.10)

⇒ δF

δn
=
∂f

∂n
−∇ · ∂f

∂∇n
(3.11)

Taking the functional derivative, we have:

δEkin

δρ
=

ppp2

2M
(3.12)

3.4.2 External potential energy

For external potential energy, we use the favourite harmonic trap:

Eext =

∫
drrr

1

2
Mω2r2n(rrr) (3.13)

=

∫
drrr

1

2
Mω2r2

∫
dppp

(2πh̄)3
η(h̄[6π2ρ(ppp)]1/3 − r) (3.14)

=

∫
dppp

(2πh̄)3
1

2
Mω2

∫ h̄[6π2ρ(ppp)]1/3

0

r2 r2 sin θdrdθdϕ (3.15)

=

∫
dppp

(2πh̄)3
1

2
Mω2 4π

1

5
h̄5[6π2ρ(ppp)]5/3 (3.16)

=

∫
dppp

20π2
M(h̄ω)2[6π2ρ(ppp)]5/3 (3.17)

Taking the functional derivative, we have:

δEext

δρ
=

1

20π2
M(h̄ω)2

5

3
[6π2ρ(ppp)]2/36π2 (3.18)

=
1

2
M(h̄ω)2[6π2ρ(ppp)]2/3 (3.19)
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Using this we can express the density in terms of the effective kinetic potential T := µ− δEext

δρ
:

ρ(ppp) =
1

6π2

[
2(µ− T )

M(h̄ω)2

]3/2
(3.20)

3.4.3 Dipole-dipole interaction energy

Next, we consider the dipole-dipole interaction energy Edd:

Edd =
1

2

∫
drrradrrrb Udd(rrra − rrrb)n

(2)(rrra, rrrb;rrra, rrrb) (3.21)

Where

Udd(rrr) =
µ0

4π

[
µµµ2

r3
− 3

(µµµ · rrr)2

r5
− 8π

3
µµµ2δ(rrr)

]
(3.22)

Using ∇∇1
r
= 3

r5
rrrrrr − 1

r3
− 4π

3
Iδ(rrr) we can rewrite:

Udd(rrr) =
µ0

4π
µµµ ·

[
−∇∇1

r
− 4πIδ(rrr)

]
· µµµ (3.23)

We want the above expression since it can be Fourier transformed easily to get the momentum

space representation:

Udd(kkk) =
µ0

4π
µµµ ·

[
−(ikkk)(ikkk)

4π

k2
− 4πI

]
· µµµ (3.24)

The exchange term

For the exchange term, we have:

Eex
dd = −1

2

∫
drrradrrrb Udd(rrra − rrrb)n

(1)(rrra;rrrb) n
(1)(rrrb;rrra) (3.25)

= −1

2

∫
drrrmdsss Udd(sss)n

(1)(rrrm +
sss

2
;rrrm − sss

2
) n(1)(rrrm − sss

2
;rrrm +

sss

2
) (3.26)

= −1

2

∫
drrrmdsss Udd(sss)

∫
dpppadpppb
(2πh̄)6

ν(rrr,pppa)ν(rrr,pppb)e
i
pppa−pppb

h̄
·sss (3.27)

Under Thomas Fermi approximation, the term ν(rrr,pppa)ν(rrr,pppb) only depends on the magnitudes

|pppa|, |ppp|2. And since pppa − pppb takes value in the entire space, we can conclude that the integral only
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depends on the magnitude |sss|. Thus we can use Udd(sss) =
µ0

4π

[
−8π

3
µµµ2δ(sss)

]
since the first two terms

in Udd(sss) vanish upon integration over the solid angle. Therefore we have in position space:

Eex
dd = −1

2

∫
drrrm

µ0

4π

[
−8π

3
µµµ2

]
n2(rrrm) (3.28)

And in momentum space with Thomas Fermi approximation again:

Eex
dd = −1

2

∫
drrrm

µ0

4π

[
−8π

3
µµµ2

] ∫
dpppadpppb
(2πh̄)6

ν(rrr,pppa)ν(rrr,pppb) (3.29)

= −1

2

∫
drrrm

µ0

4π

[
−8π

3
µµµ2

] ∫
dpppadpppb
(2πh̄)6

η(h̄[6π2ρ(pppa)]
1/3 − r)η(h̄[6π2ρ(pppb)]

1/3 − r) (3.30)

= −1

2

µ0

4π

[
−8π

3
µµµ2

] ∫
dpppadpppb
(2πh̄)6

4π

3
r3m

∣∣
rm=h̄[6π2ρ<]1/3 (3.31)

= −1

2

µ0

4π

[
−8π

3
µµµ2

] ∫
dpppadpppb
(2πh̄)3

ρ< (3.32)

One immediately realizes that this exchange term has the effect of canceling out with

the third delta function term in equation [3.22] as we shall see in equations [3.37, 3.38].

And ρ< is defined as:

ρ< = min{ρ(pppa), ρ(pppb)} (3.33)

The direct term

The direct term can be evaluated similarly using the above mentioned Fourier transform of Udd:

Edir
dd =

1

2

∫
drrradrrrb Udd(rrra − rrrb)n(rrra) n(rrrb) (3.34)

=
1

2

∫
dpppadpppb
(2πh̄)3

µ0

4π

[
(µµµ · kkk)24π

k2
− 4πµµµ2

]
k=

pppa−pppb
h̄

ρ< (3.35)

Combining the exchange term and direct term

Combining the exchange term and direct term for the interaction energy we have:

Edd = Edir
dd + Eex

dd =
µ0

2

∫
dpppadpppb
(2πh̄)3

[
(µµµ · kkk)2

k2
− 1

3
µµµ2

]
k=

pppa−pppb
h̄

ρ< (3.36)
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Taking the functional derivative, we have the dipole-dipole interaction potential in momentum

space:

V mom
dd :=

δEdd

δρ(pppa)
=
µ0

2

∫
dpppb

(2πh̄)3

[
(µµµ · kkk)2

kkk2
− 1

3
µµµ2

]
kkk=

pppa−pppb
h̄

η[ρ(pppb)− ρ(pppa)] (3.37)

Note that we have used the notation Udd for the actual potential and Vdd that is defined as

the functional derivative of the energy functional. Again since we know that the exchange term

has the effect of canceling out with the third delta function term in equation [3.22].

We can write down the position space version easily:

V pos
dd :=

δEdd

δρ(rrra)
=

µ0

4πrrr3

∫
drrrb

[
−3

(µµµ · rrr)2

rrr2
+ µµµ2

]
rrr=rrra−rrrb

(3.38)

3.5 The integral equation

By demanding the functional derivative of the total energy functional with respect to density to

vanish: δE
δρ

= 0, we can arrive at the following integral equation:

0 =− µ+
ppp2

2M
+

1

2
M(h̄ω)2[6π2ρ(ppp)]2/3+ (3.39)

µ0µµµ
2

2

∫
dkkk

(2π)3

[
(µ̂µµ · kkk)2

k2
− 1

3

]
η[ρ(ppp− h̄kkk)− ρ(ppp)] (3.40)

We want to first attempt solving this equation analytically. But the step function part

η[ρ(ppp− h̄kkk) − ρ(ppp)] is hard to deal with and many attempts have failed, thus I had to let it

be 1 by unwillingly making the assumption that the density ρ(ppp) is isotropic. Together we

introduce the substitution ppp− h̄kkk = qqq so the integral term V mom
dd becomes

V mom,iso
dd = − 1

(2πh̄)3

∫
|qqq|<|ppp|

dqqq

[
[µ̂µµ · (ppp− qqq)]2

(ppp− qqq)2
− 1

3

]
(3.41)

Note that ppp and µ̂µµ are constants in the integration. Therefore without loss of generalization,

in a (x, y, z) coordinates system we can choose ppp to be along z axis and µ̂µµ to be in the x-z plane.

Let the angle between ppp and µ̂µµ to be α we have:
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ppp =
(
0, 0, p

)
µ̂µµ =

(
sinα, 0, cosα

)
qqq = q

(
sin θ cosϕ, sin θ sinϕ, cos θ

)
(3.42)

This integration can be solved using Mathematica:

" pVec = {0, 0, p};

muHat = {Sin[alpha], 0, Cos[alpha]};

qVec = q * {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi], Cos[theta]};

pMinusQ = pVec - qVec;

f := q^2 * Sin[theta] * ((muHat.pMinusQ)^2 / pMinusQ.pMinusQ - 1/3)

And we get the following output:

1

9
πp3(3 cos(2α) + 1) (3.43)

Thus the density under the isotropic assumption is:

ρ(ppp) =
1

6π2
(
1

2
M(h̄ω)2)−3/2

 µ︸︷︷︸
Vchem

− ppp2

2M︸ ︷︷ ︸
Vkin

+
µ0µµµ

2p3

144 h̄3π2
(3 cos(2α) + 1)︸ ︷︷ ︸

V mom,iso
dd


3/2

(3.44)

The term V mom,iso
dd which is the result of integrating equation [3.41] after making the isotropic

assumption, has the familiar look of the spherical harmonic Y 0
2 :

Figure 3.1: V mom,iso
dd has the familiar look of the spherical harmonic Y 0

2
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We note that the density ρ(ppp) not only depends on magnitude p of ppp, but also the angle α,

i.e., the direction of ppp. This contradicts with the previous isotropic assumption, thus we regard

this as a proof by contradiction and conclude: there exists no isotropic solution ρ(ppp) to the

integral equation. Hence this system will have be studied numerically using my own DPFT code

in the next chapter.
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Chapter 4

My own DPFT code development

Throughout the past few years Dr. Martin Trappe has been working on the development of

DPFT code for our group. His code has been used by all of our group members in their works.

However, I set up the goal to develop my own code. I have had several experiences writing code for

machine learning. In the field of machine learning there have been huge efforts made by numerous

prominent computer scientists in the development of parallelization. Therefore it would be wise to

use a package that provides GPU/TPU acceleration out of the box. I have chosen PyTorch which

is the state of the art library developed by Facebook.

4.1 Kohn Sham vs DPFT-TF in 1D

As a first step I implemented Kohn Sham DFT and orbital free DPFT code with Thomas Fermi

approximation in 1D position space. This is in order to get the simplest form of a correctly

working code, and the Kohn Sham code is written to verify such correctness. As mentioned earlier

the Kohn Sham DFT and orbital free DPFT mainly differ from the calculation of density. Whereas

the self consistent loop and interaction energy are the same for both. Therefore we first discuss

the implementation of these two and compare the density implementations later.

4.1.1 Both: the self consistent loop

The self consistent (SC) loop is the classical approach used in DFT. As the name suggests, we iter-

atively calculate the interaction energy and density from one another until the density converges.

More specifically, first we set the initial density to zeros, this is equivalent to setting a zero initial
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interaction potential. We then use the total potential to calculate the new density. Finally we mix

the new density and the old one and use it to calculate the new interaction potential. The loop

repeats as such. The implementation in Python is as follows:

def forward(self,Vext,method): # self consistent loop

l = self.config[’loop’]

rho = np.zeros like(self.x)

for i in range(l[’Imax’]):

Vx,Vh = getVint(self,rho)

oldRho = rho

if method == ’KS’:

rho,N,E,psi = getRhoKS(self,Vx+Vh+Vext)

elif method == ’DPFT−TF’:

rho,N,E,psi = getRhoDPFT(self,Vx+Vh+Vext)

if np.mean(np.abs(oldRho−rho)) < l[’precision’]:

print(’forward break at {}’.format(i)); break

return Vx,Vh,rho,N,E,psi

4.1.2 Both: the interaction energy

For interaction energy calculation, we only consider two terms out of simplicity. They are the

exchange energy under local density approximation and the Hartree (Coulomb) energy. We are

considering Hartree interaction instead of dipole-dipole interaction because the 1D code is just to

test out the idea and get a properly working prototype code. The dipole-dipole interactions are

implemented in 2D and 3D where the concept of magnetic dipole vector µµµ actually makes sense.

EH [n(rrr)] =
1

2

∫
drrrdrrr′

n(rrr)n(rrr′)

|rrr − rrr′|+ ϵ
(4.1)

ELDA
x [n] = −3

4
(
3

π
)1/3

∫
drrr n4/3 (4.2)

Where the small quantity ϵ has been added to the 1
r
Hartree energy to avoid infinity near

the origin. Note that the Hartree energy and in general any interaction energy has the form of

correlation f(rrr, rrr′) that involves two coordinates. They can be implemented easily in python. In
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the following x is a 1D array (vector). And we have used x[None,:] and x[:,None] to represent

rrr and rrr′ respectively. The keyword None represents expanding an extra dimension, thus the

operations between x[None,:] and x[:,None] are automatically broadcasted and form a 2D

array (matrix).

def getVint(o,rho):

Vx = − (3/np.pi)∗∗(1/3) ∗ rho∗∗(1/3)

Vh = np.sum(rho[None ,:]/np.sqrt((o.x[None,:]−o.x[:,None])∗∗2+o.dx),

axis=−1) ∗ o.dx

return Vx,Vh

We demonstrate the correctness of the above method by comparing it with a for-loop in 3D.

Since the for-loop goes through each element of the array, we know that it definitely produces

the correct result. Note that we do not want to use the for-loop for production code since it

cannot be accelerated in Python, whereas the array operation: x[None,:] is accelerated by

Numpy/PyTorch automatically. The code below produces True and justifies the viability.

def forloopInt(n): #we know that the for−loop is definitely correct

x = np.linspace(−0.5,0.5,n)

I = np.zeros([n,n,n,n,n,n])

for i in range(n):

for j in range(n):

for k in range(n):

for a in range(n):

for b in range(n):

for c in range(n):

I[i][j][k][a][b][c] = (x[i]−x[a])∗∗2+(x[j]−x[b])∗∗2+(x[k]−x[c])∗∗2

return I

def arrayInt(n):

x = np.linspace(−0.5,0.5,n)

xx,yy,zz = np.meshgrid(x,x,x,sparse=True,indexing=’ij’)

I = (xx[None,None,None,:,:,:]−xx[:,:,:,None,None,None])∗∗2 \

+ (yy[None,None,None,:,:,:]−yy[:,:,:,None,None,None])∗∗2 \
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+ (zz[None,None,None,:,:,:]−zz[:,:,:,None,None,None])∗∗2

return I

print(np.all(forloopInt(10)==arrayInt(10))) # output: True

4.1.3 Kohn Sham: the Laplacian matrix

In the Kohn Sham code I used the idea of representing the Laplacian as a matrix. The potential

energy is represented in diagonal matrix and added to the Laplacian matrix, this forms the Hamil-

tonian whose eigenvectors are the wave functions we seek:
[
(i∇)2

2
+ Vext[n] + Vint[n]

]
ψi(rrr) = ϵiψi(rrr).

The first step would be to implement the Laplacian ∇2, which can be discretized into a matrix M

as follows in 1D:

∇2ψ =
d2ψ

dx2
=
ψi+1 − 2ψi + ψi−1

h2
≡Mψ (4.3)

where h is the grid size. And in 3D we have:

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= (4.4)

ψi+1,j,k + ψi−1,j,k + ψi,j+1,k + ψi,j−1,k + ψi,j,k+1 + ψi,j,k−1 − 6ψi,j,k

h2
≡Mψ (4.5)

For a 2× 2× 2 grid, this looks like:

Mψ =



−6 1 1 0 1 0 0 0

1 −6 0 1 0 1 0 0

1 0 −6 1 0 0 1 0

0 1 1 −6 0 0 0 1

1 0 0 0 −6 1 1 0

0 1 0 0 1 −6 0 1

0 0 1 0 1 0 −6 1

0 0 0 1 0 1 1 −6





ψ1,1,1

ψ2,1,1

ψ1,2,1

ψ2,2,1

ψ1,1,2

ψ2,1,2

ψ1,2,2

ψ2,2,2



(4.6)

The matrix M can be generated using the following python code:

27



from scipy.sparse import spdiags,eye,kron,linalg

def laplacian1d(N):

e = np.ones(N)

Laplacian = spdiags([e,−2∗e,e], [−1,0,1], N, N)

return Laplacian.toarray()

def laplacian3d(nx,ny,nz,sparse=0):

N = nx∗ny∗nz

ex = np.ones(nx); ey = np.ones(ny); e = np.ones(N)

Ix = eye(nx); Iy = eye(ny); Iz = eye(nz)

Lx = spdiags([ex,−3∗ex,ex], [−1,0,1], nx, nx)

Ly = spdiags([ey,−3∗ey,ey], [−1,0,1], ny, ny)

Lxy = kron(Iy,Lx)+kron(Ly,Ix)

L = spdiags([e,e], [−nx∗ny, nx∗ny], N, N)

Laplacian = (kron(Iz,Lxy)+L)

if sparse: return Laplacian

else: return Laplacian.toarray()

4.1.4 Kohn Sham: the density

The Kohn Sham density n(rrr) =
N∑
i

|ψi(rrr)|2 can be implemented as follows. The o.Hkin (Laplacian

with some constant) are calculated in the class initialization method. Similarly, all quantities that

do not change are calculated once at initialization. After finding eigenvalues and eigenvectors (KS

orbitals) of the Hamiltonian, these orbitals are filled according to total particle number.

def getRhoKS(o,V):

d = o.config[’rho’]

E,psi = np.linalg.eigh(o.Hkin + np.diagflat(V))

I = np.sum(psi∗∗2,axis=0) ∗ o.dx

psi = psi/np.sqrt(I)[None,:]

Nk = [2 for in range(d[’N’]//2)]
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if d[’N’] % 2: Nk.append(1)

rho = np.zeros like(psi[:,0])

for Nk ,psi in zip(Nk,psi.T):

rho += Nk ∗ psi ∗∗2

return rho,d[’N’],E,psi

4.1.5 DPFT-TF: the density

Recall the third of the three self consistent equations [2.10] of DPFT in position space formalism:

n =
δELGD

kin [V−µ]

δV
. And with the Thomas Fermi approximation we have:

ELGD
kin [V − µ] =

∫
drrrdppp

(2πh̄)3
[
ppp2

2m
+ V (rrr)− µ] η(µ− ppp2

2m
− V ) (4.7)

Therefore in 3D and 1D the densities are respectively:

n(rrr) =

∫
dppp

(2πh̄)3
1 · η(µ− ppp2

2m
− V ) =

1

6π2h̄3
P 3|

P=
√

2m(µ−V )
(4.8)

n(r) =

∫
dp

2πh̄
1 · η(µ− p2

2m
− V ) =

P

πh̄
|
P=

√
2m(µ−V )

(4.9)

They can be implemented as follows. The main difference in the DPFT code below compared

with Kohn Sham code above is an additional for-loop that calculates the correct chemical potential

µ so that the resulting density gives the correct total particle number. In Kohn Sham code it is

easier since one simply fills the KS orbitals two particles at a time (for Fermions). Whereas in

orbital free DPFT we find the chemical potential using bisection method, i.e., by testing many

possible values of µ until we find the correct one. Therefore the density is calculated in each

iteration using the internal function getRhoN:

def getRhoDPFT(o,V):

def getRhoN(mu,V):

muMinusV = mu − V; muMinusV[muMinusV<0] = 0

rho = np.power(muMinusV ,0.5); N = np.sum(rho) ∗ o.dx

return rho,N

muMax = muMin = np.min(V); trueN = o.config[’rho’][’N’]
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while getRhoN(muMax,V)[1] < trueN: muMax = muMax∗2

for i in range(o.config[’loop’][’Imax’]):

muMid = (muMax+muMin)/2

rho,N = getRhoN(muMid,V)

if(N > trueN): muMax = muMid

else: muMin = muMid

if 1−muMin/muMax < o.config[’loop’][’precision’]:

print(’getRhoDPFT break at {}’.format(i)); break

return rho,N,0,0

4.1.6 Both: the result comparison

We first consider the Harmonic external potential, we can see that the Kohn Sham and DPFT-TF

results agrees quite well with each other:

Figure 4.1: Kohn Sham vs DPFT-TF in 1D: Vext = r2, Nparticle = 18

Next we consider the Coulomb external potential. This time the Kohn Sham and DPFT-TF

results agree well with each other at large particle number N = 36, but differ significantly at
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N = 18. Since we know the Kohn Sham is the most accurate, this result justified the commonly

accepted observation: Thomas Fermi approximation works better with larger particle

numbers.

(a) Nparticle = 18

(b) Nparticle = 36

Figure 4.2: Kohn Sham vs DPFT-TF in 1D: Vext = − Z
r+ϵ
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4.2 DPFT in 2D using PyTorch Multi-GPU acceleration

I have successfully implemented the orbital free DPFT with Thomas-Fermi implementation, and

compared it with custom Kohn Sham DFT code in 1D. Now I just have to modify the 1D code

into 2D and add the Multi-GPU acceleration feature. The first and simplest modifications are the

computation grid and the Hartree interaction energy:

# the computation grid

x = np.linspace(s[’x’][0],s[’x’][1],s[’x’][2]); dx = x[1] − x[0]

y = np.linspace(s[’y’][0],s[’y’][1],s[’y’][2]); dy = y[1] − y[0]

o.dV = dx ∗ dy

xx, yy = np.meshgrid(x,y,sparse=True,indexing=’ij’)

# the Hartree interaction energy

VhKernel = ((xx[None,None,:,:]−xx[:,:,None,None])∗∗2 \

+ (yy[None,None,:,:]−yy[:,:,None,None])∗∗2 + 1e−2

)∗∗0.5 ∗ o.dV

Vh = rho[None,None,:,:] / o.VhKernel

Vh = np.sum(Vh,axis=−1); Vh = np.sum(Vh,axis=−1);

4.2.1 Conversion from Numpy to PyTorch

Next we take four steps to make the conversion from Numpy to PyTorch.

In[1]:=• The first step is to import the package and declare the GPU device:

import torch as tc

GPU = tc.device(’cuda:0’ if tc.cuda.is available() else ’cpu’)

• The second step is to convert Numpy arrays to PyTorch tensors, and load them into GPU

memory:

o.VhKernel = tc.from numpy(VhKernel).to(GPU)

rho = tc.zeros(self.xx.shape).to(GPU)

Vext = tc.from numpy(Vext).to(GPU)
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• The third step is to convert Python class to PyTorch module

class DPFT2D(tc.nn.Module):

def init (self,config):

super(DPFT2D,self). init ()

......

def forward(self,Vext): # self consistent loop

......

return Vx.cpu().numpy(),Vh.cpu().numpy(),rho.cpu().numpy(),N.cpu().numpy()

• The fourth step is to use multiple GPU as many as accessible by the computing device:

dft = DPFT2D(config)

if tc.cuda.device count() > 1: dft = tc.nn.DataParallel(dft)

dft.to(GPU); print(’using {} GPUs !’.format(tc.cuda.device count()))
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4.2.2 The result

(a) Vext = r2, ϵ = 10−3 for Vh (b) Vext = r2, ϵ = 10−5 for Vh

(c) Vext = − Z
r+ϵ , ϵ = 10−5 for both Vext, Vh

Figure 4.3: DPFT in 2D using PyTorch Multi-GPU acceleration

The above result with 50×50 grid was very quickly generated. The exact time for running the full

calculation will not be discussed here in 2D, but will be discussed in detail for the 3D case with

the more complex dipole-dipole interaction in momentum space. We can see that with a smaller

value ϵ = 10−5, the Hartree potential EH [n(rrr)] =
1
2

∫
drrrdrrr′ n(rrr)n(rrr′)

|rrr−rrr′|+ϵ
has larger values for rrr ≈ rrr′.
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Since Hartree energy represents the Coulomb repulsion between electrons, thus the density with

smaller ϵ is more expanded. We can also see that the density at a fixed y value has exactly the

same shape as in 1D, this is expected since both Vext = r2 and Vext = − Z
r+ϵ

are isotropic.

4.3 DPFT2D with dipole-dipole interaction Vdd

4.3.1 Momentum space dipole-dipole interaction

Recall the momentum space dipole-dipole interaction V mom
dd from equation [3.37]:

V mom
dd :=

δEdd

δρ(pppa)
=
µ0

2

∫
dpppb

(2πh̄)3

[
(µµµ · kkk)2

kkk2
− 1

3
µµµ2

]
kkk=

pppa−pppb
h̄

η[ρ(pppb)− ρ(pppa)] (4.10)

We implement it in two parts:

• The following constructs the interaction correlation kernel since it is unchanged during the

loop. Therefore we run the following code once in the initialization method of our class:

const = c[’mu0’]/16/(np.pi∗c[’hbar’])∗∗3 ∗ o.dV

numerator = (

c[’mu’][0] ∗ (xx[None,None,:,:]−xx[:,:,None,None]) +

c[’mu’][1] ∗ (yy[None,None,:,:]−yy[:,:,None,None])

)∗∗2 + 1e−5

denominator = (xx[None,None,:,:]−xx[:,:,None,None])∗∗2 \

+ (yy[None,None,:,:]−yy[:,:,None,None])∗∗2 + 1e−5

mu2over3 = (c[’mu’][0]∗∗2 + c[’mu’][1]∗∗2)/3

VddKernel = const ∗ (numerator/denominator − mu2over3)

o.VddKernel = tc.from numpy(VddKernel).to(GPU)

• Then we run the following during the self consistent loop. Note that the Heaviside unit step

function can be easily implemented using the mask method: the expression rhoDiff < 0

generates an array of True/False values, and the expression rhoDiff[rhoDiff < 0] selects

the elements in rhoDiff corresponding to True.
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Vx = − (3/np.pi)∗∗(1/3) ∗ rho∗∗(1/3)

rhoDiff = rho[None,None,:,:]−rho[:,:,None,None]

rhoDiff[rhoDiff<0] = 0; rhoDiff[rhoDiff>0] = 1

Vdd = rhoDiff ∗ o.VddKernel

return Vx,Vdd.sum(−1).sum(−1)

4.3.2 Momentum space result

We use the constants h̄ = 1,m = 1, µ0 = 500 and the Harmonic external potential. By comparing

the result between two different direction of the magnetic momentum µµµ, we arrive at the result that

the momentum space density is squeezed along the magnetic moment µµµ. The physical

interpretation behind this will be clear after comparing it with the position space result in the

next section. Note that in the following the direction of µµµ is labeled as red arrow:

(a) µµµ = (0, 1) momentum space (b) µµµ = (0.7, 0.7) momentum space

Figure 4.4: The momentum space density is squeezed along the magnetic moment µµµ
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4.3.3 Momentum space VS position space

Recall the position space dipole-dipole interaction V pos
dd from equation [3.38]:

V pos
dd :=

δEdd

δρ(rrra)
=

µ0

4πrrr3

∫
drrrb

[
−3

(µµµ · rrr)2

rrr2
+ µµµ2

]
rrr=rrra−rrrb

(4.11)

We implement it similarly:

# in the initialization method

const = c[’mu0’]/4/np.pi ∗ o.dV

Vdd x Kernel = const ∗ (mu2/(r∗∗3 + 3e−3)− 6∗muDotR2/(r∗∗5 + 3e−3))

o.Vdd x Kernel = tc.from numpy(Vdd x Kernel).to(GPU)

# during the self consistent loop

Vint = rho[None,None,:,:] ∗ o.Vdd x Kernel

Note the term 3 (µµµ·rrr)2
rrr2

has been changed to 6 (µµµ·rrr)2
rrr2

in the implementation so that the stretching

effect shown below is easier to view. The result using 3 also has the stretching effect but it

is not obviously visible from the figure. We didn’t have to make such an unwilling change in

momentum space to view the squeezing effect. Now since one realize that the expression

[4.10] for momentum space and [4.11] for position space is essentially the same except

for the step function term η[ρ(pppb)− ρ(pppa)], we can conclude that in momentum space the

squeezing effect coming from the term
[
(µµµ·kkk)2
kkk2

− 1
3
µµµ2

]
is enhanced by the step function

term η[ρ(pppb)− ρ(pppa)].
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(a) position space (b) momentum space

Figure 4.5: Position space density is stretched along µµµ, momentum space density is squeezed

Note how Vdd in momentum and position space differ from each other. Since in both spaces µµµ

vector has been chosen to be (0.7, 0.7), from this we can try to explain these stretching/squeezing

physically:

• In position space the density is stretched along µµµ, since the magnets tend to align head to

tail with one another.

• In momentum space the density is squeezed along µµµ. This is physically clear from the relation

k = 2π
λ
, and since the position space density profile is the same as the position space wave

function profile, which is in turn the same as the wavelength λ profile, thus one would expect

the effect in momentum space and position space to be the inverse of each other. This is also

clear by looking at mathematical expressions: V mom
dd is essentially negative V pos

dd enhanced

by the step function term. An alternative physical explanation from the particle perspective

is also plausible: It is easier for an atom to move perpendicular to µµµ than along µµµ due to

attraction and repulsion from neighbouring atoms, thus momentums perpendicular to µµµ is

favoured.
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4.4 DPFT in 3D using PyTorch Multi-GPU acceleration

The 3D code can be upgraded easily from 2D. Although there is no manual hard work, the computer

has to do much more calculation and provide much more memory. In the entire code developing

process, I am using the popular Google Colab platform, which provides a limited amount of RAM

and only a single GPU due to the vast amount of global users. Therefore, for the position space

calculation, I was only able to run my code on a 25× 25× 25 = 15625 grid points before running

out of RAM. Note this in fact corresponds to 156252 = 244140625 points for the 6D interaction

energy before contraction. And for the slightly more complicated momentum space interaction

energy, the limit is 20 × 20 × 20. Despite the computing limitations, the result in 3D agrees well

with 2D and is clearly visualizable. For the magnetic moment µµµ = (0.7, 0.7, 0) lying on xy plane,

the position space density is stretched along µµµ whereas the momentum density is squeezed along µµµ.

This is physically expected since the interaction energies have rotational symmetry around µµµ,

therefore the 2D case for µµµ = (0.7, 0.7) must be the same as 3D case for µµµ = (0.7, 0.7, 0)

Figure 4.6: The result in 3D agrees well with 2D: momentum space
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The three columns in the figures correspond to cross sections of the 3D quantities in yz, xz, xy

planes respectively. Since the stretching/squeezing effects are not obvious for ones in yz, xz density

plots, the reader is suggested to refer to the clearer Vdd plot instead. Note that the pattern we see

in yz, xz Vdd plots are expected since µµµ = (0.7, 0.7, 0) has components along x and y directions.

Also note that the densities in the position space plot below seems squeezed instead of stretched,

but this is due to the aspect ratio of the plot, one should again refer to the Vdd plot.

Figure 4.7: The result in 3D agrees well with 2D: position space

4.5 The performance

I compared CPU vs GPU performance in the 3D case with dipole interaction in momentum space,

using exactly the same settings as the previous section. the details can be found in the appendix 3

the config code. This has been chosen for comparison because 3D is much more demanding than

1D and 2D, since the interaction energy which essentially is a correlation between the density with
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some kernel, scales as N6
grid in 3D space. I have chosen momentum space since the dipole dipole

interaction has a more complicated form in it than position space. We can see that, although the

longest calculation in either case only takes a few minutes to run, the GPU is still very useful and

provides much shorter run time at larger grid sizes.

(a) momentum space

Figure 4.8: CPU vs GPU performance in 3D

4.6 Python package distribution

The code from 1D to 3D has been published to pypi.org as an official python package. A brief

documentation has been developed for user guidance. The results presented in this report are

provided as examples.

• The package can be found from link https://pypi.org/project/PyDPFT/

• The GitHub repository is https://github.com/tesla-cat/PyDPFT

4.7 VASP and its enlightenment on my code

In order to improve my DPFT code, I spent quite some time learning how the state of the art

DFT code is developed. I have chosen Vienna Ab initio Simulation Package (VASP)21 and have
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learned a lot of great features that enhances performance and provides more functionality. I will

try to add these nice features into my own code as a future agenda.

In the 1D Kohn Sham code a single operation to calculate the eigenvalues and eigenvectors was

extremely fast, therefore even the entire self-consistent loop takes merely seconds to run on a 1D

gird of 200 points. However in 3D implementation the amount of calculations is vastly increased.

Even with PyTorch GPU acceleration it took 159 seconds to run a single diagonalization operation

in a 20× 20× 20 grid:

H = tc.from numpy(laplacian3d(nx=20,ny=20,nz=20)).to(gpu)

start time = time.time()

E, Psi = tc.eig(H,eigenvectors=True)

print("−−− %s seconds −−−" % (time.time() − start time))

print(E.shape,’\n’,Psi.shape)

#The output is :

−−− 159.46788477897644 seconds −−−

torch.Size([8000, 2]) torch.Size([8000, 8000])

We can see that it took 159 seconds to find 8000 eigenvalues E, each eigenvalue is composed

of a real and an imaginary part, hence we have an array of shape [8000, 2]. We also have 8000

eigenvectors ψ and each eigenvector is composed of 8000 real numbers, hence [8000, 8000]. This

approach of turning the Laplace operator into a matrix and then finding its eigenvalues is clearly

not practical in 3D. The practical method used in the state of the art DFT programs is basis

expansion. For example in VASP a core algorithm is known as projector augmented wave (PAW)22

, where the plain waves23 have been chosen as basis vectors:

ψi(rrr) =
∑
kkk

ci,kkk
1√
Ω
eikkk·rrr =

∑
kkk

ci,kkk|kkk⟩ (4.12)

Substitute this into the single particle Schrodinger equation and multiply by ⟨lll|:

∑
kkk

⟨lll|H|kkk⟩ci,kkk = ϵici,lll (4.13)

Therefore, the idea is that in order to find the Kohn Sham orbital ψi(rrr), we find the eigenvectors

of the matrix that is the representation of the Hamiltonian operator in plane wave basis. For kinetic
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operator (i∇)2

2
we have

⟨lll|(i∇)2

2
|kkk⟩ = 1

2
kkk2 δlllkkk (4.14)

For potential operator V = Vext + Vint we consider Fourier transform, which is essentially

representing the V in plane wave basis

V (rrr) =

∫
dggg V (ggg)eiggg·rrr V (ggg) =

1

Ω

∫
drrr V (rrr)e−iggg·rrr (4.15)

⟨lll|V |kkk⟩ =
∫
dggg ⟨lll|V (ggg)eiggg·rrr|kkk⟩ =

∫
dggg V (ggg)δlll,kkk+ggg (4.16)

For crystal lattice, ggg only take discrete values in the reciprocal lattice ggg → GGGi. Therefore we

make the definition lll − kkk = ggg ≡ GGGm −GGGn, then the matrix elements of the Hamiltonian becomes

⟨lll|H|kkk⟩ → ⟨kkk +GGGm|H|kkk +GGGn⟩, Finally the single particle Schrodinger equation

∑
kkk

⟨lll|H|kkk⟩ci,kkk = ϵici,lll becomes (4.17)

∑
n

[
1

2
(kkk +GGGn)

2 δmn + V (GGGm −GGGn)

]
ci,n = ϵici,m (4.18)

For Hartree part of the interaction potential we can use the familiar Fourier transform:

VH [n(rrr)] =

∫
drrr′

n(rrr′)

|rrr − rrr′|
(4.19)

VH [n(GGG)] =
1

Ω

∫
drrr VH [n(rrr)]e

−iGGG·rrr =
4π

GGG2
n(GGG) n(GGG) =

1

Ω

∫
drrr′ n(rrr′)e−iGGG·r′r′r′ (4.20)

The external potential in the case of nucleus-electron Coulomb interaction is essentially the

same as above. The Coulomb potential however, results in many zeros near the nucleus, requiring

more plain waves to describe it. Thus in real applications the method of pseudopotentials or

projector augmented waves are used. This idea of using basis expansion in orbital free DPFT

has been discussed between Dr. Martin Trappe and myself. Since it doesn’t use actual space but

basis functions, the computation cost is much smaller than both Dr. Martin’s and my own DPFT

code. Therefore we have set up the goal to somehow incorporate basis expansion into

orbital free DPFT in the future.
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Chapter 5

An initial exploration: filtering the TF

density

I had the following observation when playing with my codes: For larger particle numbers (N) TF

density agrees much better with KS density. On the other hand for larger N , more KS orbitals

(modes) are involved. Therefore I made the following guess:

• For small particle numbers, only few orbitals are involved in KS, but TF corresponds to the

large N limit, i.e., has more modes. Therefore, we should apply a low pass filter on TF

density to filter out larger modes.

• But for larger particle numbers, both KS and TF involve many modes, they agree well with

each other so neither filtering is needed, nor would it help.

The following compares the TF density before and after applying a fourth order Butterworth

low pass filter:
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(a) original

(b) filtered

Figure 5.1: For small particle numbers (N = 2), filtering the TF density improves the density
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(a) original

(b) filtered

Figure 5.2: For larger particle numbers (N = 32), filtering is not needed

The physical reasoning is: The discontinuity in the density results from the discontinuity of

the step function in TF approximation. The step function is in momentum (frequency) domain,

consequently results in high frequency responses in position (time) domain. Therefore by applying

a low pass filter on the density removes the high frequency responses and removes the discontinuity

in TF density. This is an initial exploration and will be further examined and justified in the future.
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Chapter 6

Summary

This thesis studied the Density Potential Functional Theory (DPFT) introduced by Julian Schwinger

and Berge Englert in both position and momentum space. It is implemented with my own code

using the state of the art Machine Learning library PyTorch.

In chapter 1, the classical Density functional theory (DFT) has been discussed. The Kohn

Sham formalism that uses wave functions (orbitals) has been compared with the orbital free (OF)

formalism. With the goal to justify the use of orbital free approach in our project.

In chapter 2, Density potential functional theory has been discussed. The idea of which is to

use a Legendre transform to convert the energy functional of density only to a functional of both

density and the conjugate variable of kinetic energy / external potential energy.

In chapter 3, the application of DPFT on spin polarized Fermi gas with magnetic dipole-dipole

interaction is studied under the Thomas Fermi (TF) and Dirac approximation. The various energy

functionals of this system, especially the dipole-dipole interaction functional Edd have been derived

for both position and momentum space.

In chapter 4, my main new contribution is discussed, which is developing my own orbital

free DPFT code and releasing it as an official python packaged for interested users. My code has

been compared with custom Kohn Sham DFT code in 1D and its correctness has been verified.

Its main feature is the use of the state of the art Machine Learning library PyTorch to achieve

multi-GPU acceleration. The performance of a single CPU and a single GPU was compared and

the GPU demonstrated great speed enhancement. The magnetic dipole-dipole interaction has been

implemented in 2D and 3D, the result of which agrees well with physical expectation. For position

space, since magnets tend to align head to tail with each other, the density profile of the Fermi
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gas is stretched along the magnetic dipole momentum µµµ. For momentum space, both physical

and mathematical observations suggested a inverse relationship between momentum and position

space, therefore the density profile is squeezed along µµµ. Furthermore, the state of the art DFT

software VASP has been studied in order to adopt its strengths into my own code in the future

development, specifically we would like to try to incorporate the use of basis expansion method in

to DPFT, which was proposed by Georg Kresse and has been proven very successful.

In chapter 5, another innovation that applies a low pass filter on TF density has shown enhanced

accuracy and will be further explored in the future.

48



Bibliography

1 Pierre Hohenberg andWalter Kohn. Inhomogeneous electron gas. Physical review, 136(3B):B864,

1964.

2 Paul AM Dirac. Note on exchange phenomena in the Thomas atom. 26(3):376–385, 1930.

3Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid exchange–correlation func-

tional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-

3):51–57, 2004.

4Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation

effects. Physical review, 140(4A):A1133, 1965.

5 Llewellyn H Thomas. The calculation of atomic fields. In Mathematical Proceedings of the

Cambridge Philosophical Society, volume 23, pages 542–548. Cambridge University Press, 1927.

6 Enrico Fermi. Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend.

Accad. Naz. Lincei, 6(602-607):32, 1927.

7 John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation

made simple. Physical review letters, 77(18):3865, 1996.
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Appendix A

Kohn Sham and OF-DPFT in 1D

A.1 Import

import numpy as np

import matplotlib.pyplot as plt

from scipy.sparse import spdiags,eye,kron,linalg

A.2 Functions

def laplacian1d(N):

e = np.ones(N)

Laplacian = spdiags([e,−2∗e,e], [−1,0,1], N, N)

return Laplacian.toarray()

def initVariables(o):

s = o.config[’space’]

c = o.config[’const’]

o.x = np.linspace(s[’x0’],−s[’x0’],s[’N’])

o.dx = o.x[1] − o.x[0]

L = laplacian1d(s[’N’]) / o.dx∗∗2

o.Hkin = −c[’hbar’]∗∗2/(2∗c[’m’]) ∗ L
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def getVint(o,rho):

Vx = − (3/np.pi)∗∗(1/3) ∗ rho∗∗(1/3)

Vh = np.sum(rho[None ,:]/np.sqrt((o.x[None,:]−o.x[:,None])∗∗2+o.dx),

axis=−1) ∗ o.dx

return Vx + Vh

def getRhoKS(o,V):

d = o.config[’rho’]

E,psi = np.linalg.eigh(o.Hkin + np.diagflat(V))

I = np.sum(psi∗∗2,axis=0) ∗ o.dx

psi = psi/np.sqrt(I)[None,:]

Nk = [2 for in range(d[’N’]//2)]

if d[’N’] % 2: Nk.append(1)

rho = np.zeros like(psi[:,0])

for Nk ,psi in zip(Nk,psi.T):

rho += Nk ∗ psi ∗∗2

return rho,d[’N’],E,psi

def getRhoDPFT(o,V):

mu = 42; ratio = 0

for i in range(o.config[’loop’][’Imax’]):

muMinusV = mu − V

muMinusV[muMinusV<0] = 0

rho = np.power(muMinusV ,0.5)

N = np.sum(rho) ∗ o.dx

ratio = N/o.config[’rho’][’N’]

if abs(ratio−1)< 1e−3:

print(’getRhoDPFT break at {}’.format(i)); break

mu = mu / ratio

return rho,N,0,0
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A.3 Main class

class DFT1D:

def init (self,config):

self.config = config

initVariables(self)

def forward(self,Vext,method): # self consistent loop

l = self.config[’loop’]

rho = np.zeros like(self.x)

for i in range(l[’Imax’]):

Vint = getVint(self,rho)

oldRho = rho

if method == ’KS’:

rho,N,E,psi = getRhoKS(self,Vint + Vext)

elif method == ’DPFT−TF’:

rho,N,E,psi = getRhoDPFT(self,Vint + Vext)

if np.mean(np.abs(oldRho−rho)) < l[’precision’]:

print(’forward break at {}’.format(i)); break

return Vint,rho,N,E,psi

A.4 Usage

config = {

’space’:{’x0’:−5,’N’:200},

’loop’:{’Imax’:1000,’precision’:1e−6},

’rho’:{’N’:18},

’const’:{’hbar’:1,’m’:1},

}

methods = [’KS’,’DPFT−TF’]
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dft = DFT1D(config)

Vext = dft.x ∗∗ 2

plt.figure(dpi=200);

ax1=plt.subplot(221); ax1.title.set text(’Vint’)

ax2=plt.subplot(222); ax2.title.set text(’rho’)

ax3=plt.subplot(223); ax3.title.set text(’KS orbitals’)

for m in methods:

Vint,rho,N,E,psi = dft.forward(Vext,m)

ax1.plot(dft.x,Vint,label=m)

ax2.plot(dft.x,rho,label=m)

if E is not 0:

for i in range(4):

ax3.plot(dft.x,psi[:,i], label=f"E: {E[i]:.3f}")

p={’size’: 6}

ax1.legend(prop=p); ax2.legend(prop=p); ax3.legend(prop=p);

plt.tight layout(); plt.show()
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Appendix B

DPFT in 2D using PyTorch Multi-GPU

acceleration

B.1 Import

import numpy as np

import matplotlib.pyplot as plt

import torch as tc

GPU = tc.device(’cuda:0’ if tc.cuda.is available() else ’cpu’)

B.2 Functions

def initVariables(o):

s = o.config[’space’]; c = o.config[’const’]

x = np.linspace(s[’x’][0],s[’x’][1],s[’x’][2]); dx = x[1] − x[0]

y = np.linspace(s[’y’][0],s[’y’][1],s[’y’][2]); dy = y[1] − y[0]

o.dV = dx ∗ dy;

xx, yy = np.meshgrid(x,y,sparse=True,indexing=’ij’)

o.x, o.y = x, y; o.xx, o.yy = xx, yy

r = ( (xx[None,None,:,:]−xx[:,:,None,None])∗∗2 \
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+ (yy[None,None,:,:]−yy[:,:,None,None])∗∗2 )∗∗0.5

VhKernel = o.dV / (r + 10∗∗−2.5)

o.VhKernel = tc.from numpy(VhKernel).to(GPU)

const = c[’mu0’]/16/(np.pi∗c[’hbar’])∗∗3 ∗ o.dV

muDotR2 = (

c[’mu’][0] ∗ (xx[None,None,:,:]−xx[:,:,None,None]) +

c[’mu’][1] ∗ (yy[None,None,:,:]−yy[:,:,None,None])

)∗∗2

mu2 = c[’mu’][0]∗∗2 + c[’mu’][1]∗∗2

Vdd p Kernel = const ∗ (muDotR2/(r∗∗2 + 10∗∗−2.5) − mu2/3)

o.Vdd p Kernel = tc.from numpy(Vdd p Kernel).to(GPU)

const = c[’mu0’]/4/np.pi ∗ o.dV

Vdd x Kernel = const ∗ (mu2/(r∗∗3 + 3e−3)− 6∗muDotR2/(r∗∗5 + 3e−3))

o.Vdd x Kernel = tc.from numpy(Vdd x Kernel).to(GPU)

def getVint(o,rho):

Vx = − (3/np.pi)∗∗(1/3) ∗ rho∗∗(1/3)

VintName = ’Dipole−x−space’

if VintName == ’Hartree’:

Vint = rho[None,None,:,:] ∗ o.VhKernel

elif VintName == ’Dipole−p−space’:

rhoDiff = rho[None,None,:,:]−rho[:,:,None,None]

rhoDiff[rhoDiff<0] = 0; rhoDiff[rhoDiff>0] = 1

Vint = rhoDiff ∗ o.Vdd p Kernel

elif VintName == ’Dipole−x−space’:

Vint = rho[None,None,:,:] ∗ o.Vdd x Kernel

return Vx,Vint.sum(−1).sum(−1)
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def getRhoDPFT(o,V):

def getRhoN(mu,V):

muMinusV = mu − V; muMinusV[muMinusV<0] =0

rho = muMinusV

N = tc.sum(rho) ∗ o.dV

return rho,N

muMax = 1; muMin = tc.min(V); trueN = o.config[’rho’][’N’]

while getRhoN(muMax,V)[1] < trueN: muMax = muMax∗2

for i in range(o.config[’loop’][’Imax’]):

muMid = (muMax+muMin)/2

rho,N = getRhoN(muMid,V)

if(N > trueN): muMax = muMid

else: muMin = muMid

if 1−muMin/muMax < o.config[’loop’][’precision’]:

print(’getRhoDPFT break at {}’.format(i))

break

return rho,N

B.3 Main class

class DPFT2D(tc.nn.Module):

def init (self,config):

super(DPFT2D,self). init ()

self.config = config

initVariables(self)

def forward(self,Vext): # self consistent loop

l = self.config[’loop’]

rho = tc.zeros(self.xx.shape).to(GPU)

Vext = tc.from numpy(Vext).to(GPU)
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for i in range(l[’Imax’]):

Vx,Vh = getVint(self,rho)

oldRho = rho

rho,N = getRhoDPFT(self,Vx+Vh+Vext)

rho = (1−l[’mix’]) ∗ oldRho + l[’mix’] ∗ rho

if tc.mean(tc.abs(oldRho−rho)) < l[’precision’]:

print(’=’∗20+’CONVERGED AFTER {} !’.format(i)+’=’∗20); break

return Vx.cpu().numpy(),Vh.cpu().numpy(),rho.cpu().numpy(),N.cpu().numpy()

B.4 Usage

def plot(dft,Vext,Vx,Vh,rho,Nparticle):

print(’Nparticle = ’,Nparticle)

print(’Vh = ’,Vh)

plt.figure(dpi=200,figsize=(4,4));

ax1=plt.subplot(221); ax1.title.set text(’Vx’)

ax2=plt.subplot(222); ax2.title.set text(’Vdd’)

ax3=plt.subplot(223); ax3.title.set text(’rho’)

y0 = int(Nspace/2)

ax4=plt.subplot(224); ax4.title.set text(’rho, y={y:.2f}’.format(y=dft.y[y0]))

resolution = 30

ax1.contourf(dft.x,dft.y,Vx,resolution)

ax2.contourf(dft.x,dft.y,Vh,resolution)

ax3.contourf(dft.x,dft.y,rho,resolution)

ax4.plot(dft.x,rho[:][y0]); print(dft.y[y0])

plt.tight layout(); plt.show()

plt.contourf(dft.x,dft.y,Vext,resolution); plt.show()

Nspace = 50
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x0 = −6

config = {

’space’:{’x’:(x0,−x0,Nspace),’y’:(x0,−x0,Nspace)},

’loop’:{’Imax’:1000,’precision’:1e−6,’mix’:0.05},

’rho’:{’N’:18},

’const’:{’hbar’:1,’m’:1,’mu0’:5,’mu’:[0.7,0.7]},

}

mu0 = [1,8,12]

def test(config):

dft = DPFT2D(config)

if tc.cuda.device count() > 1: dft = tc.nn.DataParallel(dft)

dft.to(GPU)

print(’using {} GPUs !’.format(tc.cuda.device count()))

Vext = dft.xx∗∗2 + dft.yy∗∗2

#Vext =−1/(dft .xx∗∗2 + dft .yy∗∗2 )∗∗0.5

Vx,Vh,rho,Nparticle = dft.forward(Vext)

plot(dft,Vext,Vx,Vh,rho,Nparticle)

for mu0 in mu0:

print(mu0 )

config[’const’][’mu0’] = mu0

test(config)
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Appendix C

DPFT in 3D using PyTorch Multi-GPU

acceleration

C.1 Import

import numpy as np

import matplotlib.pyplot as plt

import torch as tc

GPU = tc.device(’cuda:0’ if tc.cuda.is available() else ’cpu’)

C.2 Functions

def initVariables(o):

s = o.config[’space’]; c = o.config[’const’]

x = np.linspace(s[’x’][0],s[’x’][1],s[’x’][2]); dx = x[1] − x[0]

y = np.linspace(s[’y’][0],s[’y’][1],s[’y’][2]); dy = y[1] − y[0]

z = np.linspace(s[’z’][0],s[’z’][1],s[’z’][2]); dz = z[1] − z[0]

o.dV = dx ∗ dy ∗ dz;

xx, yy, zz = np.meshgrid(x,y,z,sparse=True,indexing=’ij’)

o.x, o.y, o.z = x, y, z; o.xx, o.yy, o.zz = xx, yy, zz
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r = ( (xx[None,None,None,:,:,:]−xx[:,:,:,None,None,None])∗∗2

+ (yy[None,None,None,:,:,:]−yy[:,:,:,None,None,None])∗∗2

+ (zz[None,None,None,:,:,:]−zz[:,:,:,None,None,None])∗∗2 )∗∗0.5

VhKernel = o.dV / (r + 10∗∗−2.5)

o.VhKernel = tc.from numpy(VhKernel).to(GPU)

const = c[’mu0’]/16/(np.pi∗c[’hbar’])∗∗3 ∗ o.dV

muDotR2 = (

c[’mu’][0] ∗ (xx[None,None,None,:,:,:]−xx[:,:,:,None,None,None]) +

c[’mu’][1] ∗ (yy[None,None,None,:,:,:]−yy[:,:,:,None,None,None]) +

c[’mu’][2] ∗ (zz[None,None,None,:,:,:]−zz[:,:,:,None,None,None])

)∗∗2

mu2 = c[’mu’][0]∗∗2 + c[’mu’][1]∗∗2 + c[’mu’][2]∗∗2

Vdd p Kernel = const ∗ (6∗muDotR2/(r∗∗2 + 10∗∗−2.5) − mu2/3)

o.Vdd p Kernel = tc.from numpy(Vdd p Kernel).to(GPU)

const = c[’mu0’]/4/np.pi ∗ o.dV

Vdd x Kernel = const ∗ (mu2/(r∗∗3 + 3e−3)− 6∗muDotR2/(r∗∗5 + 3e−3))

o.Vdd x Kernel = tc.from numpy(Vdd x Kernel).to(GPU)

def getVint(o,rho):

Vx = − (3/np.pi)∗∗(1/3) ∗ rho∗∗(1/3)

VintName = ’Dipole−p−space’

if VintName == ’Hartree’:

Vint = rho[None,None,None,:,:,:] ∗ o.VhKernel

elif VintName == ’Dipole−p−space’:

rhoDiff = rho[None,None,None,:,:,:]−rho[:,:,:,None,None,None]

rhoDiff[rhoDiff<0] = 0; rhoDiff[rhoDiff>0] = 1

Vint = rhoDiff ∗ o.Vdd p Kernel

elif VintName == ’Dipole−x−space’:
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Vint = rho[None,None,None,:,:,:] ∗ o.Vdd x Kernel

return Vx,Vint.sum(−1).sum(−1).sum(−1)

def getRhoDPFT(o,V):

def getRhoN(mu,V):

muMinusV = mu − V; muMinusV[muMinusV<0] =0

rho = muMinusV∗∗1.5

N = tc.sum(rho) ∗ o.dV

return rho,N

muMax = 1; muMin = tc.min(V); trueN = o.config[’rho’][’N’]

while getRhoN(muMax,V)[1] < trueN: muMax = muMax∗2

for i in range(o.config[’loop’][’Imax’]):

muMid = (muMax+muMin)/2

rho,N = getRhoN(muMid,V)

if(N > trueN): muMax = muMid

else: muMin = muMid

if 1−muMin/muMax < o.config[’loop’][’precision’]:

print(’getRhoDPFT break at {}’.format(i))

break

return rho,N

C.3 Main class

class DPFT3D(tc.nn.Module):

def init (self,config):

super(DPFT3D,self). init ()

self.config = config

initVariables(self)

def forward(self,Vext): # self consistent loop
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l = self.config[’loop’]

rho = tc.zeros(self.xx.shape).to(GPU)

Vext = tc.from numpy(Vext).to(GPU)

for i in range(l[’Imax’]):

Vx,Vh = getVint(self,rho)

oldRho = rho

rho,N = getRhoDPFT(self,Vx+Vh+Vext)

rho = (1−l[’mix’]) ∗ oldRho + l[’mix’] ∗ rho

if tc.mean(tc.abs(oldRho−rho)) < l[’precision’]:

print(’=’∗20+’CONVERGED AFTER {} !’.format(i)+’=’∗20); break

tc.cuda.empty cache()

return Vx.cpu().numpy(),Vh.cpu().numpy(),rho.cpu().numpy(),N.cpu().numpy()

C.4 Usage

def plot(dft,Vext,Vx,Vh,rho,Nparticle):

print(’Nparticle = ’,Nparticle)

plt.figure(dpi=200,figsize=(4,4));

ax11=plt.subplot(331); ax11.title.set text(’Vx x=0’)

ax12=plt.subplot(332); ax12.title.set text(’Vx y=0’)

ax13=plt.subplot(333); ax13.title.set text(’Vx z=0’)

ax21=plt.subplot(334); ax21.title.set text(’Vdd x=0’)

ax22=plt.subplot(335); ax22.title.set text(’Vdd y=0’)

ax23=plt.subplot(336); ax23.title.set text(’Vdd z=0’)

ax31=plt.subplot(337); ax31.title.set text(’rho x=0’)

ax32=plt.subplot(338); ax32.title.set text(’rho y=0’)

ax33=plt.subplot(339); ax33.title.set text(’rho z=0’)
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x0 = int(Nspace/2)

resolution = 30

ax11.contourf(dft.y,dft.z,Vx[x0,:,:],resolution)

ax12.contourf(dft.x,dft.z,Vx[:,x0,:],resolution)

ax13.contourf(dft.x,dft.y,Vx[:,:,x0],resolution)

ax21.contourf(dft.y,dft.z,Vh[x0,:,:],resolution)

ax22.contourf(dft.x,dft.z,Vh[:,x0,:],resolution)

ax23.contourf(dft.x,dft.y,Vh[:,:,x0],resolution)

ax31.contourf(dft.y,dft.z,rho[x0,:,:],resolution)

ax32.contourf(dft.x,dft.z,rho[:,x0,:],resolution)

ax33.contourf(dft.x,dft.y,rho[:,:,x0],resolution)

plt.tight layout(); plt.show()

Nspace = 20

x0 = −2.5

config = {

’space’:{’x’:(x0,−x0,Nspace),’y’:(x0,−x0,Nspace),’z’:(x0,−x0,Nspace)},

’loop’:{’Imax’:1000,’precision’:1e−6,’mix’:0.05},

’rho’:{’N’:18},

’const’:{’hbar’:1,’m’:1,’mu0’:100,’mu’:[0.7,0.7,0]},

}

def test(config):

dft = DPFT3D(config)

if tc.cuda.device count() > 1: dft = tc.nn.DataParallel(dft)

dft.to(GPU)

print(’using {} GPUs !’.format(tc.cuda.device count()))
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Vext = dft.xx∗∗2 + dft.yy∗∗2 + dft.zz∗∗2

#Vext =−1/(dft .xx∗∗2 + dft .yy∗∗2 )∗∗0.5

Vx,Vh,rho,Nparticle = dft.forward(Vext)

return dft,Vext,Vx,Vh,rho,Nparticle

dft,Vext,Vx,Vh,rho,Nparticle = test(config)

plot(dft,Vext,Vx,Vh,rho,Nparticle)
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