
Density Potential Functional Theory in

position and momentum space and its

implementation using PyTorch

Ding Ruiqi

Supervisor: Prof. Berge Englert

March 2020

Table of Contents

Summary

Density functional theory

Density potential functional theory (DPFT)

Wigner function and densities

Spin polarized Fermi gas with magnetic dipole-dipole

interaction

My own DPFT code development: PyDPFT

PyDPFT: Compare with Kohn Sham

PyDPFT: 2D dipole dipole

PyDPFT: 3D dipole dipole

An initial exploration: filtering the TF density

Summary

▶ Topic: Density Potential Functional Theory

▶ Application: Spin polarized Fermi gas with magnetic

dipole-dipole interaction

▶ Contributions:

▶ Derived various energy functionals

▶ Developed my own DPFT package: PyDPFT

▶ Simulated the dipole system

▶ New idea to filter Thomas Ferimi density

▶ Highlights: 1D to 3D, position and momentum space,

multi-GPU acceleration

▶ Results: Agrees well with physical expectation

Density functional theory

▶ Wave function to density: Ψ(rrr1, rrr2, ...rrrN) to n(rrr)

means RRR3N → CCC to RRR3 → R

▶ Orbital free: faster but less accurate

▶ Thomas-Fermi density: Integrating the phase space

density η(µ−H(ppp,rrr)) (Wigner function).

nTF(rrr) = 2
∫
dppp η(µ−H(ppp,rrr)) 1

(2πℏ)3 = 1
3π2 k

3
F (rrr)

where η: Heaviside step function. µ: chemical potential.

▶ Kinetic energy: TTF[n] =
∫
drrrdppp ppp2

2m = CTF

∫
drrr n5/3

▶ Corrections: Gradient expansions. E.g. TF-Weizsacker

functional: TTFW[n] = TTF[n] +
1
8

∫
drrr |∇n|2

n

Density functional theory

▶ Kohn Sham: slower but more accurate

▶ Kohn Sham orbitals:

Ψ(rrr1, rrr2, ...rrrN) to {ψ1(rrr), ψ2(rrr), ...ψN (rrr)}
RRR3N → CCC to RRR3 → N ×CCC

▶ Single particle Schrodinger equation:[
(i∇)2

2 + Vext[n] + Vint[n]
]
ψi(rrr) = ϵiψi(rrr)

▶ Density: n(rrr) =
N∑
i

|ψi(rrr)|2

▶ Kinetic energy: Tkin[ψi(rrr)]

Density potential functional theory (DPFT)

▶ By Julian Schwinger and Berge Englert

▶ Energy functional:

E[n, µ] = Ekin +
∫
drrr Vextn+ Eint[n] + µ(N −

∫
drrr n)

▶ Conjugate variable: V := µ− δEkin
δn

▶ Legendre transform:

ELGD
kin := Ekin −

∫
drrr n δEkin

δn = Ekin +
∫
drrr n · (V − µ)

▶ Rewrite Energy functional:

E = ELGD
kin [V − µ] +

∫
drrr (Vext − V)n+ Eint[n] + µN

▶ Self consistent equations:
δE[n,µ,V]

δn = 0 = Vext − V + δEint[n]
δn

δE[n,µ,V]
δµ = 0 =

δELGD
kin [V−µ]
δµ +N

δE[n,µ,V]
δV = 0 =

δELGD
kin [V−µ]
δV − n

DPFT: Momentum space

▶ Energy functional:

E[n, µ] =
∫
dppp Tkinn+ Eext + Eint[n] + µ(N −

∫
dppp n)

▶ Conjugate variable: T := µ− δEext
δn

▶ Legendre transform:

ELGD
ext := Eext −

∫
dppp n δEext

δn = Eext +
∫
dppp n · (T − µ)

▶ Rewrite Energy functional:

E =
∫
dppp (Tkin − T)n+ ELGD

ext + Eint[n] + µN

▶ Self consistent equations:
δE[n,µ,T]

δn = 0 = Tkin − T + δEint[n]
δn

δE[n,µ,T]
δµ = 0 =

δELGD
ext [T−µ]
δµ +N

δE[n,µ,T]
δT = 0 =

δELGD
ext [T−µ]
δT − n

Wigner function and densities

▶ Wigner function : ν(rrr,ppp)

▶ Spatial one particle density matrix: (1) for one

particle. 1 for position

n(1)(rrr1;rrr2) =
∫ dppp

(2πℏ)3 ν(
rrr1+rrr2

2 , ppp)ei
ppp
ℏ ·(rrr1−rrr2)

▶ Spatial one particle density:

n(rrr) = n(1)(rrr;rrr) =
∫ dppp

(2πℏ)3 ν(rrr,ppp)

▶ Momentum space: ρ(ppp) =
∫

drrr
(2πℏ)3 ν(rrr,ppp)

Approximations

▶ Dirac’s approximation for two particle density

matrix: 1a for position 1 of particle (a)

n(2)(rrr1a, rrr1b;rrr2a, rrr2b) =

n(1)(rrr1a;rrr2a) n
(1)(rrr1b;rrr2b)− n(1)(rrr1a;rrr1b) n

(1)(rrr2b;rrr2a)

▶ Physics: Effect of exchanging positions of the two particles

▶ Our system: Particle can only be at one place rrr1a = rrr2a:

n(2)(rrra, rrrb;rrra, rrrb) = n(rrra) n(rrrb)︸ ︷︷ ︸
direct term

−n(1)(rrra;rrrb) n
(1)(rrrb;rrra)︸ ︷︷ ︸

exchange term

▶ Thomas Fermi approximation:

ν(rrr,ppp) = η(ℏ[6π2n(rrr)]1/3 − p)︸ ︷︷ ︸
position space

ν(rrr,ppp) = η(ℏ[6π2ρ(ppp)]1/3 − r)︸ ︷︷ ︸
momentum space

Spin polarized Fermi gas with magnetic dipole-dipole

interaction

▶ Kinetic energy: Ekin =
∫
dppp ppp2

2M ρ(ppp)
δEkin
δρ = ppp2

2M

▶ External potential: Harmonic trap

Eext =

∫
drrr

1

2
Mω2r2n(rrr) (1)

= ... =

∫
dppp

20π2
M(ℏω)2[6π2ρ(ppp)]5/3 (2)

δEext
δρ = 1

2M(ℏω)2[6π2ρ(ppp)]2/3

▶ Density: T := µ− δEext
δρ ⇒ ρ(ppp) = 1

6π2

[
2(µ−T)
M(ℏω)2

]3/2

Spin polarized Fermi gas with magnetic dipole-dipole

interaction

▶ Dipole-dipole interaction:

Edd =
1

2

∫
drrradrrrb Udd(rrra − rrrb)n

(2)(rrra, rrrb;rrra, rrrb) (3)

where Udd(rrr) =
µ0
4π

[
µµµ2

r3
− 3 (µµµ·rrr)2

r5
− 8π

3 µµµ
2δ(rrr)

]
▶ Results: after long derivation

V mom
dd := δEdd

δρ(pppa)
=

µ0
2

∫ dpppb
(2πℏ)3

[
(µµµ·kkk)2
kkk2

− 1
3µµµ

2
]
kkk=

pppa−pppb
ℏ

η[ρ(pppb)− ρ(pppa)]

V pos
dd := δEdd

δρ(rrra)
= µ0

4π

∫
drrrb

1
rrr3

[
−3 (µµµ·rrr)2

rrr2
+µµµ2

]
rrr=rrra−rrrb

Analytical attempt

▶ The integral equation: δE
δρ = 0

▶ Isotropic assumption: η[ρ(ppp− ℏkkk)− ρ(ppp)] = 1 and

integrate over a ball

▶ Integration trick: ppp =
(
0, 0, p

)
µ̂µµ =(

sinα, 0, cosα
)

qqq = q
(
sin θ cosϕ, sin θ sinϕ, cos θ

)
▶ Anisotropic result: ρ(ppp) =

1
6π2 (

1
2M(ℏω)2)−3/2

 µ︸︷︷︸
Vchem

− ppp2

2M︸ ︷︷ ︸
Vkin

+
µ0µµµ

2p3

144 ℏ3π2
(3 cos(2α) + 1)︸ ︷︷ ︸

V mom,iso
dd


3/2

My own DPFT code development: PyDPFT

▶ All Members of my group use Dr. Martin Trappe’s code

▶ His code runs on CPU, which is slow

▶ I want to develop my code with GPU parallelization

▶ I used PyTorch (state of the art Machine Learning library)

to achieve this

▶ Orbital free. Published as a python package. GitHub:

github.com/tesla-cat/PyDPFT

Figure: My Python package: orbital free PyDPFT

github.com/tesla-cat/PyDPFT

PyDPFT: Compare with Kohn Sham

▶ The interaction: Exchange energy under Dirac

approximation and the Hartree (Coulomb) energy

EH [n(rrr)] =
1
2

∫
drrrdrrr′ n(r

rr)n(rrr′)
|rrr−rrr′|+ϵ

ELDA
x [n] = −3

4(
3
π)

1/3
∫
drrr n4/3

▶ Kohn Sham density: Express the Laplacian as matrix to

solve single particle shrodinger equation:

∇2ψ = d2ψ
dx2

= ψi+1−2ψi+ψi−1

h2
≡Mψ

▶ PyDPFT Thomas Fermi density:

ELGD
kin [V − µ] =

∫ drrrdppp
(2πℏ)3 [

ppp2

2m + V (rrr)− µ] η(µ− ppp2

2m − V)

n =
δELGD

kin [V−µ]
δV = 1

6π2ℏ3P
3|
P=

√
2m(µ−V)

PyDPFT: Compare with Kohn Sham

▶ Result: agrees well with each other

Figure: Kohn Sham vs DPFT-TF in 1D: Vext = r2, Nparticle = 18

PyDPFT: Compare with Kohn Sham

▶ Result: Thomas Fermi works better at large Nparticle

(a) Nparticle = 18 (b) Nparticle = 36

Figure: Kohn Sham vs DPFT-TF in 1D: Vext = − Z
r+ϵ

PyDPFT: 2D dipole dipole

▶ PyDPFT: very simple to use

Figure: PyDPFT: very simple to use, 2D

PyDPFT: 2D dipole dipole

(a) position space (b) momentum space

Figure: Position space density is stretched along µµµ = (0.7, 0.7),

momentum space density is squeezed

PyDPFT: 2D dipole dipole explanation

▶ Position space: Density stretched along µµµ

▶ Magnets tend to align head to tail with one another.

▶ Momentum space: Density squeezed along µµµ

▶ Wave view: k = 2π
λ , thus large λ profile along some

direction in rrr space corresponds to small k profile in ppp space

▶ Particle view: easier to move perpendicular to µµµ than

along µµµ due to attraction and repulsion from neighbouring

atoms

▶ Math view: V pos
dd is basically the negative of V mom

dd with

an extra 1
rrr3

V mom
dd = µ0

2

∫
dpppb

(2πℏ)3

[
(µµµ·kkk)2
kkk2 − 1

3µµµ
2
]
kkk=

pppa−pppb
ℏ

η[ρ(pppb)− ρ(pppa)]

V pos
dd = µ0

4π

∫
drrrb

1
rrr3

[
−3 (µµµ·rrr)2

rrr2 +µµµ2
]
rrr=rrra−rrrb

PyDPFT: 3D dipole dipole

Figure: PyDPFT: very simple to use, 3D

PyDPFT: 3D dipole dipole - momentum

Figure: The result in 3D agrees well with 2D: momentum space

PyDPFT: 3D dipole dipole - position

Figure: The result in 3D agrees well with 2D: position space

An initial exploration: filtering the TF density

▶ Discontinuity in TF density due to step function η()

Figure: Original

An initial exploration: filtering the TF density

▶ Discontinuity in rrr or t space leads to high frequency

responses in kkk or ω space

Figure: Filtered

	Summary
	Density functional theory
	Density potential functional theory (DPFT)
	Wigner function and densities
	Spin polarized Fermi gas with magnetic dipole-dipole interaction
	My own DPFT code development: PyDPFT
	PyDPFT: Compare with Kohn Sham
	PyDPFT: 2D dipole dipole
	PyDPFT: 3D dipole dipole
	An initial exploration: filtering the TF density

