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Summary

» Topic: Density Potential Functional Theory

> Application: Spin polarized Fermi gas with magnetic
dipole-dipole interaction
> Contributions:
» Derived various energy functionals
» Developed my own DPFT package: PyDPFT
» Simulated the dipole system
» New idea to filter Thomas Ferimi density
> Highlights: 1D to 3D, position and momentum space,

multi-GPU acceleration

> Results: Agrees well with physical expectation



Density functional theory

» Wave function to density: ¥(ri,ro,..75) to n(r)
means R*™ - C to R®—=R
> Orbital free: faster but less accurate
» Thomas-Fermi density: Integrating the phase space
density n(u — H(p,r)) (Wigner function)
ntr(r —2fdp77,“ H(p, )) 27Th) :37lrzk3()
where n: Heaviside btep function. p: Chemlcal potential.
> Kinetic energy: Trp[n| = [drdp 2- = Cyp [dr n?/3
» Corrections: Gradlent expansmns E.g. TF-Weizsacker

functional: Trpw(n] = Trr[n] + & [ dr |v"‘



Density functional theory

» Kohn Sham: slower but more accurate
» Kohn Sham orbitals:
U(ry,re,..rn) to {Y1(r),va(r),..¥n(r)}
RN »C to RP—=NxC
» Single particle Schrodinger equation:
[52° + Visaln] + V]| () = esti(r)

> Density: n(r) = g: i (r)]?

> Kinetic energy: Tiin[i(r)]



Density potential functional theory (DPFT)

>

| 2

By Julian Schwinger and Berge Englert

Energy functional:

E[?’L, ,u] = Ekin + f dr ‘/extn + Eint [n] + IU(N - f dr n)

Conjugate variable: V = p — 5Ekm

Legendre transform:

ELCGD .= By — [drn Bsn = By + [drn- (V- p)
Rewrite Energy functional:

E=ELSPIWV — ul + [dr (Vext — V)n + Et[n] + uN
Self consistent equati0n5°

SE] — 0 = Vi = V7 + gl

SEMm.uV] _ EﬁED[V 1]
on —0= L DM " N
0EnuV] _  _ SELSPIV—p]

1% - oV



DPFT: Momentum space

>

Energy functional:

E[n, M] = f dp Tkinn + Eext + Eint [n] + ,U(N - f dp TL)

Conjugate variable: T := pu — 5?—;’“

Legendre transform:

BLGP 1= By — [ dpn 2525 = B + [ dpn- (T~ 1)
Rewrite Energy functional:

E = [dp (Tign — T)n + ELGP + Ein[n] + uN

Self consistent equations:
6E[”7M7T] — 0 — Tkln _ T + 6Eint [TL]

on LoD on
(sE[TL“u,,T] — — OF Xt [Tfy’]
o = 0= 4N
6E[’I’L,/J,,T] — 0 — 6E(I;XCED [T_H’] _

5T oT n



Wigner function and densities

» Wigner function : v(r,p)

> Spatial one particle density matrix: @ for one
particle. ; for position

n(rira) = [ iy v(m5m p)e BT

> Spatial one particle density:

n(r) =1 (rir) = [ 2 v(r,p)

» Momentum space: p(p) = [ (Qii’"h)?, v(r,p)



Approximations

> Dirac’s approximation for two particle density
matrix: 1, for position 1 of particle (a)
n3 (r1q, 7143720, T2p) =
n(l)(ﬁa;f‘za) n(l)("'lb;"'Qb) - ”(1)(7‘1a;r1b) n(l)(r%;rga)

» Physics: Effect of exchanging positions of the two particles

» Our system: Particle can only be at one place 1, = raq:

0@ (ra,ri7a,m) = n(ra) nlry) —n ra;ry) n®(ryira)
direc‘trterm exchar:ge term

» Thomas Fermi approximation:
v(r.p) = n(hlom*n ()] ~ ) v(r.p) = n(hlom*p(p)] 1)

Vv
position space momentum space




Spin polarized Fermi gas with magnetic dipole-dipole
interaction
> Kinetic energy: Fyi, = [ dp %p(p)

6Bgin _ P°
op 2M

> External potential: Harmonic trap

Bt = / dr S Mw?r?n(r) (1)

/ 2§§2 M (ho 67 p)]*/* @)

bBaxe — LM (hw)?[6m%p(p)]*/®

» Density: T := i — 5Ee"° = p(p) = 5= [JQ\/(IA(Lh_wT)%

]3/2



Spin polarized Fermi gas with magnetic dipole-dipole

interaction

> Dipole-dipole interaction:

1
Eqq = 5 /d’f‘adf‘b Uad(ra — )0 (1o, 15 70,73) (3)

where Uyq(r) = 12 [IL — gl smy2s(p)

> Results: after long derivation

mom ._ 6Faqq _
Vad 50(pa)

2
el (% (B8~ 302] o lo(e) — p(p0)
h
Vid© = aép%flf) =12 [dry 5 [_3( 7'2) +p?

r=r.,—Tp



Analytical attempt

» The integral equation: 9E _

op
» Isotropic assumption: n[p(p — hk) — p(p)] = 1 and
integrate over a ball
» Integration trick: p = (0,0,p> o=
(sin a, 0, cos a) qQ=q (sin 0 cos ¢, sin @ sin ¢, cos 0)
» Anisotropic result: p(p) =

3/2

2 2.3
1 /1 2\—3/2 p Hopt™p
Vehem

Viin V(;Somﬁiso



My own DPFT code development: PyDPFT

» All Members of my group use Dr. Martin Trappe’s code

» His code runs on CPU, which is slow

» [ want to develop my code with GPU parallelization

» T used PyTorch (state of the art Machine Learning library)

to achieve this
Orbital free. Published as a python package. GitHub:
github.com/tesla-cat/PyDPFT

PyDPFT 0.0.6

v

pip install PyDPFT IR

Figure: My Python package: orbital free PyDPFT


github.com/tesla-cat/PyDPFT

PyDPFT: Compare with Kohn Sham

» The interaction: Exchange energy under Dirac

approximation and the Hartree (Coulomb) energy

Enln(r fdnﬂ’ﬁﬁ%ﬁ
ELPAfn 1= —HE)Y8 [ dr nt?

> Kohn Sham density: Express the Laplacian as matrix to
solve single particle shrodinger equation:
v21/] _ 1;2715 _ wi+1—2}:gi+’¢i—1 = My

» PyDPFT Thomas Fermi density:
BRIV — il = [ b8 + V) —uln(n— Bz — V)

(2wh)3
 SEPV—y

oV 67r2fi3P |P \2m(u—V)




PyDPFT: Compare with Kohn Sham

> Result: agrees well with each other

VX Vh
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Figure: Kohn Sham vs DPFT-TF in 1D: Vo, = 72, Nparticle = 18



PyDPFT: Compare with Kohn Sham

> Result:

Thomas Fermi works better at large Nparticle
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(a) Nparticle =18

Figure: Kohn Sham vs DPFT-TF in 1D: Vo = —

(b) Nparticle = 36
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PyDPFT: 2D dipole dipole

» PyDPFT: very simple to use
2D Dipole-dipole interaction in momentum (p) space

° config = {

o

‘space':{'x':[-5,5,5@], 'y :[-5,5,50]},
'loop':{'Imax':106@, 'precision':1le-6, 'mix':0.05},
‘const':{'epsilon':le-2,'mu':[0.7, ©.71},
‘rho’:{"N":32},

'Vint':{'name"’:'Dipole-p', 'coef':.1},

}

dpft = PyDPFT(config)

Vext = dpft.xx**2 + dpft.yy**2
Vx,Vint,rho,N = dpft(Vext)
plot(dpft,Vx,Vint,rho)

PyDPFT: Written by Ding Ruigi from NUS for his bachelor thesis
PyDPFT: Detected dim = 2

PyDPFT: Using 1 GPUs !

PyDPFT: Starting the self consistent loop

PyDPFT: Converged after 219 iterations in 3.8995468616485596 seconds!

Figure: PyDPFT: very simple to use, 2D



PyDPFT: 2D dipole dipole

Vx Vvdd Vx vdd
5] 5 4 4
21 2
0 0 0 0
-2 -2
-5 —54
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(a) position space (b) momentum space

Figure: Position space density is stretched along p = (0.7, 0.7),

momentum space density is squeezed



PyDPFT: 2D dipole dipole explanation

> Position space: Density stretched along p
> Magnets tend to align head to tail with one another.
» Momentum space: Density squeezed along p
» Wave view: k = 27”, thus large A profile along some
direction in 7 space corresponds to small &k profile in p space
» Particle view: easier to move perpendicular to u than
along p due to attraction and repulsion from neighbouring
atoms
> Math view: VI[® is basically the negative of V3™ with

an extra 1
2
viem = 8 [ Gl [WES - dt] ., nle(es) = p(pa)]
- h
Vias =42 [ dry {* LT?Q +M2}




PyDPFT: 3D dipole dipole

3D Dipole-dipole interaction in position (x) space

° config = {

*space':{'x":[-5,5,20],'y":[-5,5,20], 'z :[-5,5,20]},

o

'loop':{'Imax":1000, 'precision':1le-6, 'mix':@.05},
‘const':{'epsilon':le-2,'mu':[0.7, 8.7, 0]},
‘rho':{'N"':32},

'Vint':{'name"':'Dipole-x", 'coef':5},

dpft = PyDPFT(config)

Vext =

dpft.xx**2 + dpft.yy**2 + dpft.zz**2

Vx,Vint,rho,N = dpft(Vext)
plot(dpft,Vx,Vint,rho)

PyDPFT:
PyDPFT:
PyDPFT:
PyDPFT:
PyDPFT:

Written by Ding Ruiqi from NUS for his bachelor thesis
Detected dim = 3

Using 1 GPUs !

Starting the self consistent loop

Converged after 142 iterations in 3.1674556732177734 seconds!

Figure: PyDPFT: very simple to use, 3D



PyDPFT: 3D dipole dipole - momentum
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Figure: The result in 3D agrees well with 2D: momentum space



PyDPFT: 3D dipole dipole - position

VX x=0 Vx y=0 Vx z=0
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Figure: The result in 3D agrees well with 2D: position space



An initial exploration: filtering the TF density

» Discontinuity in TF density due to step function 7()
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Figure: Original




An initial exploration: filtering the TF density

» Discontinuity in r or ¢ space leads to high frequency

responses in k or w space
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Figure: Filtered
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