

Density Potential Functional Theory in position and momentum space and its implementation using PyTorch

Ding Ruiqi

Supervisor: Prof. Berge Englert

March 2020

Table of Contents

Summary

Density functional theory

Density potential functional theory (DPFT)

Wigner function and densities

Spin polarized Fermi gas with magnetic dipole-dipole interaction

My own DPFT code development: PyDPFT

PyDPFT: Compare with Kohn Sham

PyDPFT: 2D dipole dipole

PyDPFT: 3D dipole dipole

An initial exploration: filtering the TF density

Summary

- ▶ **Topic:** Density Potential Functional Theory
- ▶ **Application:** Spin polarized Fermi gas with magnetic dipole-dipole interaction
- ▶ **Contributions:**
 - ▶ Derived various energy functionals
 - ▶ Developed my own DPFT package: PyDPFT
 - ▶ Simulated the dipole system
 - ▶ New idea to filter Thomas Fermi density
- ▶ **Highlights:** 1D to 3D, position and momentum space, multi-GPU acceleration
- ▶ **Results:** Agrees well with physical expectation

Density functional theory

- ▶ **Wave function to density:** $\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$ to $n(\mathbf{r})$
means $\mathbf{R}^{3N} \rightarrow \mathbf{C}$ to $\mathbf{R}^3 \rightarrow R$
- ▶ **Orbital free:** faster but less accurate

- ▶ **Thomas-Fermi density:** Integrating the phase space density $\eta(\mu - H(\mathbf{p}, \mathbf{r}))$ (Wigner function).

$$n_{\text{TF}}(\mathbf{r}) = 2 \int d\mathbf{p} \, \eta(\mu - H(\mathbf{p}, \mathbf{r})) \frac{1}{(2\pi\hbar)^3} = \frac{1}{3\pi^2} k_F^3(\mathbf{r})$$

where η : Heaviside step function. μ : chemical potential.

- ▶ **Kinetic energy:** $T_{\text{TF}}[n] = \int d\mathbf{r} d\mathbf{p} \, \frac{\mathbf{p}^2}{2m} = C_{\text{TF}} \int d\mathbf{r} \, n^{5/3}$
- ▶ **Corrections:** Gradient expansions. E.g. TF-Weizsäcker functional: $T_{\text{TFW}}[n] = T_{\text{TF}}[n] + \frac{1}{8} \int d\mathbf{r} \, \frac{|\nabla n|^2}{n}$

Density functional theory

- ▶ **Kohn Sham:** slower but more accurate

- ▶ **Kohn Sham orbitals:**

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \quad \text{to} \quad \{\psi_1(\mathbf{r}), \psi_2(\mathbf{r}), \dots, \psi_N(\mathbf{r})\}$$

$$\mathbf{R}^{3N} \rightarrow \mathbf{C} \quad \text{to} \quad \mathbf{R}^3 \rightarrow N \times \mathbf{C}$$

- ▶ **Single particle Schrodinger equation:**

$$\left[\frac{(i\nabla)^2}{2} + V_{\text{ext}}[n] + V_{\text{int}}[n] \right] \psi_i(\mathbf{r}) = \epsilon_i \psi_i(\mathbf{r})$$

- ▶ **Density:** $n(\mathbf{r}) = \sum_i^N |\psi_i(\mathbf{r})|^2$

- ▶ **Kinetic energy:** $T_{\text{kin}}[\psi_i(\mathbf{r})]$

Density potential functional theory (DPFT)

- ▶ By Julian Schwinger and Berge Englert

- ▶ **Energy functional:**

$$E[n, \mu] = E_{\text{kin}} + \int d\mathbf{r} V_{\text{ext}} n + E_{\text{int}}[n] + \mu(N - \int d\mathbf{r} n)$$

- ▶ **Conjugate variable:** $V := \mu - \frac{\delta E_{\text{kin}}}{\delta n}$

- ▶ **Legendre transform:**

$$E_{\text{kin}}^{\text{LGD}} := E_{\text{kin}} - \int d\mathbf{r} n \frac{\delta E_{\text{kin}}}{\delta n} = E_{\text{kin}} + \int d\mathbf{r} n \cdot (V - \mu)$$

- ▶ **Rewrite Energy functional:**

$$E = E_{\text{kin}}^{\text{LGD}}[V - \mu] + \int d\mathbf{r} (V_{\text{ext}} - V)n + E_{\text{int}}[n] + \mu N$$

- ▶ **Self consistent equations:**

$$\frac{\delta E[n, \mu, V]}{\delta n} = 0 = V_{\text{ext}} - V + \frac{\delta E_{\text{int}}[n]}{\delta n}$$

$$\frac{\delta E[n, \mu, V]}{\delta \mu} = 0 = \frac{\delta E_{\text{kin}}^{\text{LGD}}[V - \mu]}{\delta \mu} + N$$

$$\frac{\delta E[n, \mu, V]}{\delta V} = 0 = \frac{\delta E_{\text{kin}}^{\text{LGD}}[V - \mu]}{\delta V} - n$$

DPFT: Momentum space

- ▶ **Energy functional:**

$$E[n, \mu] = \int d\mathbf{p} T_{\text{kin}} n + E_{\text{ext}} + E_{\text{int}}[n] + \mu(N - \int d\mathbf{p} n)$$

- ▶ **Conjugate variable:** $T := \mu - \frac{\delta E_{\text{ext}}}{\delta n}$

- ▶ **Legendre transform:**

$$E_{\text{ext}}^{\text{LGD}} := E_{\text{ext}} - \int d\mathbf{p} n \frac{\delta E_{\text{ext}}}{\delta n} = E_{\text{ext}} + \int d\mathbf{p} n \cdot (T - \mu)$$

- ▶ **Rewrite Energy functional:**

$$E = \int d\mathbf{p} (T_{\text{kin}} - T)n + E_{\text{ext}}^{\text{LGD}} + E_{\text{int}}[n] + \mu N$$

- ▶ **Self consistent equations:**

$$\frac{\delta E[n, \mu, T]}{\delta n} = 0 = T_{\text{kin}} - T + \frac{\delta E_{\text{int}}[n]}{\delta n}$$

$$\frac{\delta E[n, \mu, T]}{\delta \mu} = 0 = \frac{\delta E_{\text{ext}}^{\text{LGD}}[T - \mu]}{\delta \mu} + N$$

$$\frac{\delta E[n, \mu, T]}{\delta T} = 0 = \frac{\delta E_{\text{ext}}^{\text{LGD}}[T - \mu]}{\delta T} - n$$

Wigner function and densities

- ▶ **Wigner function :** $\nu(\mathbf{r}, \mathbf{p})$
- ▶ **Spatial one particle density matrix:** ⁽¹⁾ for one particle. ₁ for position

$$n^{(1)}(\mathbf{r}_1; \mathbf{r}_2) = \int \frac{d\mathbf{p}}{(2\pi\hbar)^3} \nu\left(\frac{\mathbf{r}_1+\mathbf{r}_2}{2}, \mathbf{p}\right) e^{i\frac{\mathbf{p}}{\hbar} \cdot (\mathbf{r}_1 - \mathbf{r}_2)}$$

- ▶ **Spatial one particle density:**

$$n(\mathbf{r}) = n^{(1)}(\mathbf{r}; \mathbf{r}) = \int \frac{d\mathbf{p}}{(2\pi\hbar)^3} \nu(\mathbf{r}, \mathbf{p})$$

- ▶ **Momentum space:** $\rho(\mathbf{p}) = \int \frac{d\mathbf{r}}{(2\pi\hbar)^3} \nu(\mathbf{r}, \mathbf{p})$

Approximations

- ▶ **Dirac's approximation for two particle density**

matrix: $_{1a}$ for position 1 of particle (a)

$$n^{(2)}(\mathbf{r}_{1a}, \mathbf{r}_{1b}; \mathbf{r}_{2a}, \mathbf{r}_{2b}) =$$

$$n^{(1)}(\mathbf{r}_{1a}; \mathbf{r}_{2a}) n^{(1)}(\mathbf{r}_{1b}; \mathbf{r}_{2b}) - n^{(1)}(\mathbf{r}_{1a}; \mathbf{r}_{1b}) n^{(1)}(\mathbf{r}_{2b}; \mathbf{r}_{2a})$$

- ▶ **Physics:** Effect of exchanging positions of the two particles

- ▶ **Our system:** Particle can only be at one place $\mathbf{r}_{1a} = \mathbf{r}_{2a}$:

$$n^{(2)}(\mathbf{r}_a, \mathbf{r}_b; \mathbf{r}_a, \mathbf{r}_b) = \underbrace{n(\mathbf{r}_a) n(\mathbf{r}_b)}_{\text{direct term}} - \underbrace{n^{(1)}(\mathbf{r}_a; \mathbf{r}_b) n^{(1)}(\mathbf{r}_b; \mathbf{r}_a)}_{\text{exchange term}}$$

- ▶ **Thomas Fermi approximation:**

$$\underbrace{\nu(\mathbf{r}, \mathbf{p}) = \eta(\hbar[6\pi^2 n(\mathbf{r})]^{1/3} - p)}_{\text{position space}} \quad \underbrace{\nu(\mathbf{r}, \mathbf{p}) = \eta(\hbar[6\pi^2 \rho(\mathbf{p})]^{1/3} - r)}_{\text{momentum space}}$$

Spin polarized Fermi gas with magnetic dipole-dipole interaction

- ▶ **Kinetic energy:** $E_{\text{kin}} = \int d\mathbf{p} \frac{\mathbf{p}^2}{2M} \rho(\mathbf{p})$
 $\frac{\delta E_{\text{kin}}}{\delta \rho} = \frac{\mathbf{p}^2}{2M}$

- ▶ **External potential:** Harmonic trap

$$E_{\text{ext}} = \int d\mathbf{r} \frac{1}{2} M \omega^2 r^2 n(\mathbf{r}) \quad (1)$$

$$= \dots = \int \frac{d\mathbf{p}}{20\pi^2} M(\hbar\omega)^2 [6\pi^2 \rho(\mathbf{p})]^{5/3} \quad (2)$$

$$\frac{\delta E_{\text{ext}}}{\delta \rho} = \frac{1}{2} M(\hbar\omega)^2 [6\pi^2 \rho(\mathbf{p})]^{2/3}$$

- ▶ **Density:** $T := \mu - \frac{\delta E_{\text{ext}}}{\delta \rho} \Rightarrow \rho(\mathbf{p}) = \frac{1}{6\pi^2} \left[\frac{2(\mu-T)}{M(\hbar\omega)^2} \right]^{3/2}$

Spin polarized Fermi gas with magnetic dipole-dipole interaction

► Dipole-dipole interaction:

$$E_{\text{dd}} = \frac{1}{2} \int d\mathbf{r}_a d\mathbf{r}_b U_{\text{dd}}(\mathbf{r}_a - \mathbf{r}_b) n^{(2)}(\mathbf{r}_a, \mathbf{r}_b; \mathbf{r}_a, \mathbf{r}_b) \quad (3)$$

where $U_{\text{dd}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left[\frac{\boldsymbol{\mu}^2}{r^3} - 3 \frac{(\boldsymbol{\mu} \cdot \mathbf{r})^2}{r^5} - \frac{8\pi}{3} \boldsymbol{\mu}^2 \delta(\mathbf{r}) \right]$

► Results: after long derivation

$$V_{\text{dd}}^{\text{mom}} := \frac{\delta E_{\text{dd}}}{\delta \rho(\mathbf{p}_a)} =$$

$$\frac{\mu_0}{2} \int \frac{d\mathbf{p}_b}{(2\pi\hbar)^3} \left[\frac{(\boldsymbol{\mu} \cdot \mathbf{k})^2}{\mathbf{k}^2} - \frac{1}{3} \boldsymbol{\mu}^2 \right]_{\mathbf{k}=\frac{\mathbf{p}_a-\mathbf{p}_b}{\hbar}} \eta[\rho(\mathbf{p}_b) - \rho(\mathbf{p}_a)]$$

$$V_{\text{dd}}^{\text{pos}} := \frac{\delta E_{\text{dd}}}{\delta \rho(\mathbf{r}_a)} = \frac{\mu_0}{4\pi} \int d\mathbf{r}_b \frac{1}{\mathbf{r}^3} \left[-3 \frac{(\boldsymbol{\mu} \cdot \mathbf{r})^2}{\mathbf{r}^2} + \boldsymbol{\mu}^2 \right]_{\mathbf{r}=\mathbf{r}_a-\mathbf{r}_b}$$

Analytical attempt

- ▶ The integral equation: $\frac{\delta E}{\delta \rho} = 0$
- ▶ Isotropic assumption: $\eta[\rho(\mathbf{p} - \hbar\mathbf{k}) - \rho(\mathbf{p})] = 1$ and integrate over a ball
- ▶ Integration trick: $\mathbf{p} = (0, 0, p)$ $\hat{\mu} = (\sin \alpha, 0, \cos \alpha)$ $\mathbf{q} = q (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
- ▶ Anisotropic result: $\rho(\mathbf{p}) =$

$$\frac{1}{6\pi^2} \left(\frac{1}{2} M (\hbar\omega)^2 \right)^{-3/2} \left[\underbrace{\mu}_{V_{\text{chem}}} - \underbrace{\frac{\mathbf{p}^2}{2M}}_{V_{\text{kin}}} + \underbrace{\frac{\mu_0 \mu^2 p^3}{144 \hbar^3 \pi^2} (3 \cos(2\alpha) + 1)}_{V_{\text{dd}}^{\text{mom,iso}}} \right]^{3/2}$$

My own DPFT code development: PyDPFT

- ▶ All Members of my group use Dr. Martin Trappe's code
- ▶ His code runs on **CPU, which is slow**
- ▶ I want to develop my code with **GPU parallelization**
- ▶ I used PyTorch (state of the art Machine Learning library) to achieve this
- ▶ Orbital free. Published as a **python package**. **GitHub**: github.com/tesla-cat/PyDPFT

Figure: My Python package: orbital free PyDPFT

PyDPFT: Compare with Kohn Sham

- ▶ **The interaction:** Exchange energy under Dirac approximation and the Hartree (Coulomb) energy

$$E_H[n(\mathbf{r})] = \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|+\epsilon}$$

$$E_{\text{x}}^{\text{LDA}}[n] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d\mathbf{r} n^{4/3}$$

- ▶ **Kohn Sham density:** Express the Laplacian as matrix to solve single particle shrodinger equation:

$$\nabla^2 \psi = \frac{d^2 \psi}{dx^2} = \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{h^2} \equiv M\psi$$

- ▶ **PyDPFT Thomas Fermi density:**

$$E_{\text{kin}}^{\text{LGD}}[V - \mu] = \int \frac{d\mathbf{r} d\mathbf{p}}{(2\pi\hbar)^3} \left[\frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mu \right] \eta(\mu - \frac{\mathbf{p}^2}{2m} - V)$$

$$n = \frac{\delta E_{\text{kin}}^{\text{LGD}}[V - \mu]}{\delta V} = \frac{1}{6\pi^2\hbar^3} P^3 \Big|_{P=\sqrt{2m(\mu-V)}}$$

PyDPFT: Compare with Kohn Sham

- ▶ **Result:** agrees well with each other

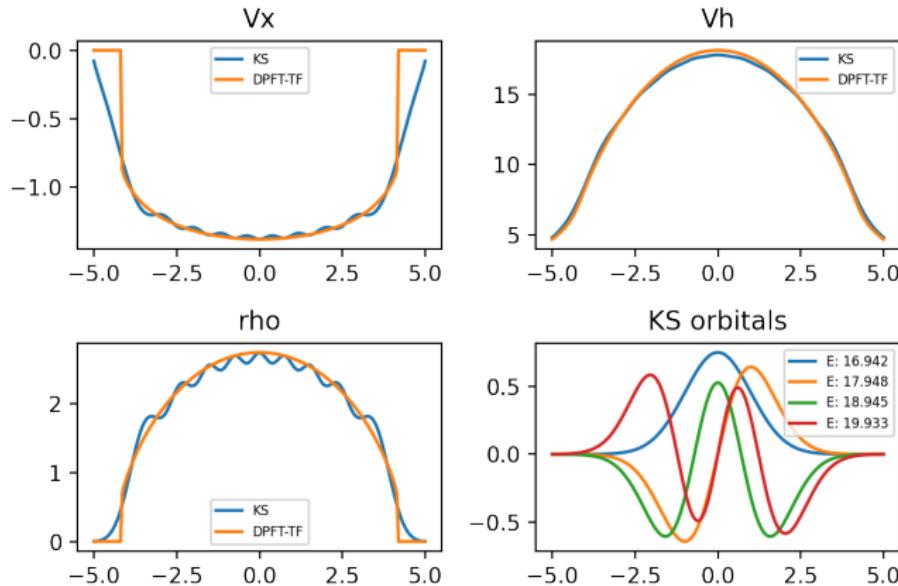
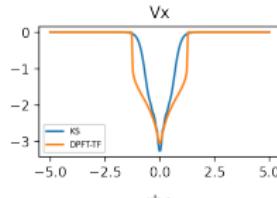
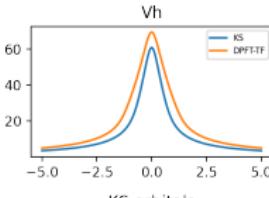
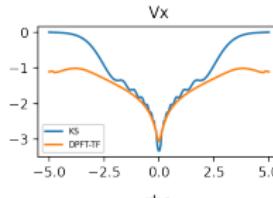
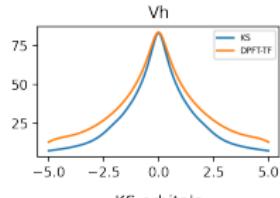
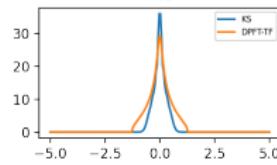
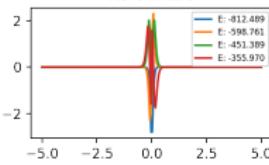
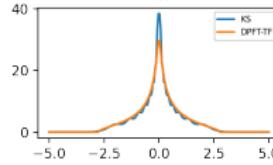
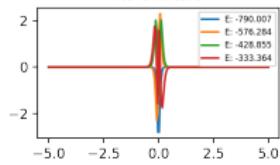


Figure: Kohn Sham vs DPFT-TF in 1D: $V_{\text{ext}} = r^2$, $N_{\text{particle}} = 18$

PyDPFT: Compare with Kohn Sham

- **Result:** Thomas Fermi works better at large N_{particle}



(a) $N_{\text{particle}} = 18$

(b) $N_{\text{particle}} = 36$

Figure: Kohn Sham vs DPFT-TF in 1D: $V_{\text{ext}} = -\frac{Z}{r+\epsilon}$

PyDPFT: 2D dipole dipole

- ▶ **PyDPFT:** very simple to use

2D Dipole-dipole interaction in momentum (p) space

```
config = {  
    'space': {'x': [-5, 5, 50], 'y': [-5, 5, 50]},  
    'loop': {'Imax': 1000, 'precision': 1e-6, 'mix': 0.05},  
    'const': {'epsilon': 1e-2, 'mu': [0.7, 0.7]},  
    'rho': {'N': 32},  
    'Vint': {'name': 'Dipole-p', 'coef': .1},  
}  
  
dpft = PyDPFT(config)  
Vext = dpft.xx**2 + dpft.yy**2  
Vx, Vint, rho, N = dpft(Vext)  
plot(dpft, Vx, Vint, rho)
```

```
⇒ PyDPFT: Written by Ding Ruiqi from NUS for his bachelor thesis  
PyDPFT: Detected dim = 2  
PyDPFT: Using 1 GPUs !  
PyDPFT: Starting the self consistent loop  
PyDPFT: Converged after 219 iterations in 3.8995468616485596 seconds!
```

Figure: PyDPFT: very simple to use, 2D

PyDPFT: 2D dipole dipole

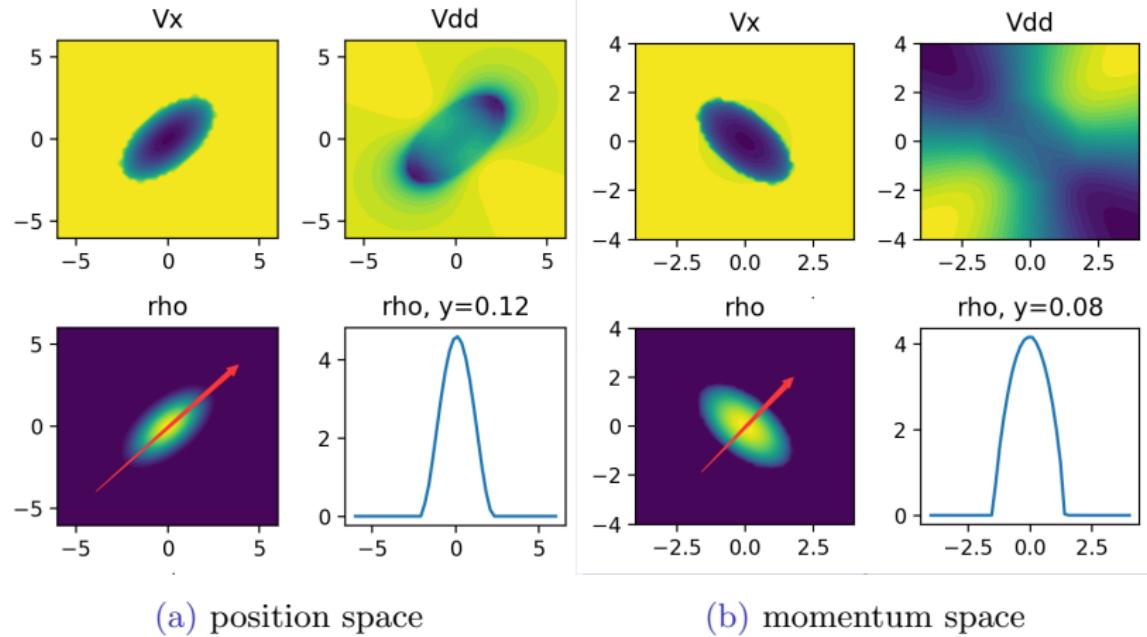


Figure: Position space density is stretched along $\mu = (0.7, 0.7)$, momentum space density is squeezed

PyDPFT: 2D dipole dipole explanation

- ▶ **Position space:** Density stretched along μ
 - ▶ Magnets tend to align head to tail with one another.
- ▶ **Momentum space:** Density squeezed along μ
 - ▶ **Wave view:** $k = \frac{2\pi}{\lambda}$, thus large λ profile along some direction in \mathbf{r} space corresponds to small k profile in \mathbf{p} space
 - ▶ **Particle view:** easier to move perpendicular to μ than along μ due to attraction and repulsion from neighbouring atoms
 - ▶ **Math view:** V_{dd}^{pos} is basically the negative of V_{dd}^{mom} with an extra $\frac{1}{\mathbf{r}^3}$
$$V_{dd}^{\text{mom}} = \frac{\mu_0}{2} \int \frac{d\mathbf{p}_b}{(2\pi\hbar)^3} \left[\frac{(\mu \cdot \mathbf{k})^2}{\mathbf{k}^2} - \frac{1}{3} \mu^2 \right]_{\mathbf{k}=\frac{\mathbf{p}_a - \mathbf{p}_b}{\hbar}} \eta[\rho(\mathbf{p}_b) - \rho(\mathbf{p}_a)]$$
$$V_{dd}^{\text{pos}} = \frac{\mu_0}{4\pi} \int d\mathbf{r}_b \frac{1}{\mathbf{r}^3} \left[-3 \frac{(\mu \cdot \mathbf{r})^2}{\mathbf{r}^2} + \mu^2 \right]_{\mathbf{r}=\mathbf{r}_a - \mathbf{r}_b}$$

PyDPFT: 3D dipole dipole

3D Dipole-dipole interaction in position (x) space

```
config = {
    'space': {'x': [-5, 5, 20], 'y': [-5, 5, 20], 'z': [-5, 5, 20]},
    'loop': {'Imax': 1000, 'precision': 1e-6, 'mix': 0.05},
    'const': {'epsilon': 1e-2, 'mu': [0.7, 0.7, 0]},
    'rho': {'N': 32},
    'Vint': {'name': 'Dipole-x', 'coef': 5},
}

dpft = PyDPFT(config)
Vext = dpft.xx**2 + dpft.yy**2 + dpft.zz**2
Vx, Vint, rho, N = dpft(Vext)
plot(dpft, Vx, Vint, rho)
```

```
PyDPFT: Written by Ding Ruiqi from NUS for his bachelor thesis
PyDPFT: Detected dim = 3
PyDPFT: Using 1 GPUs !
PyDPFT: Starting the self consistent loop
PyDPFT: Converged after 142 iterations in 3.1674556732177734 seconds!
```

Figure: PyDPFT: very simple to use, 3D

PyDPFT: 3D dipole dipole - momentum

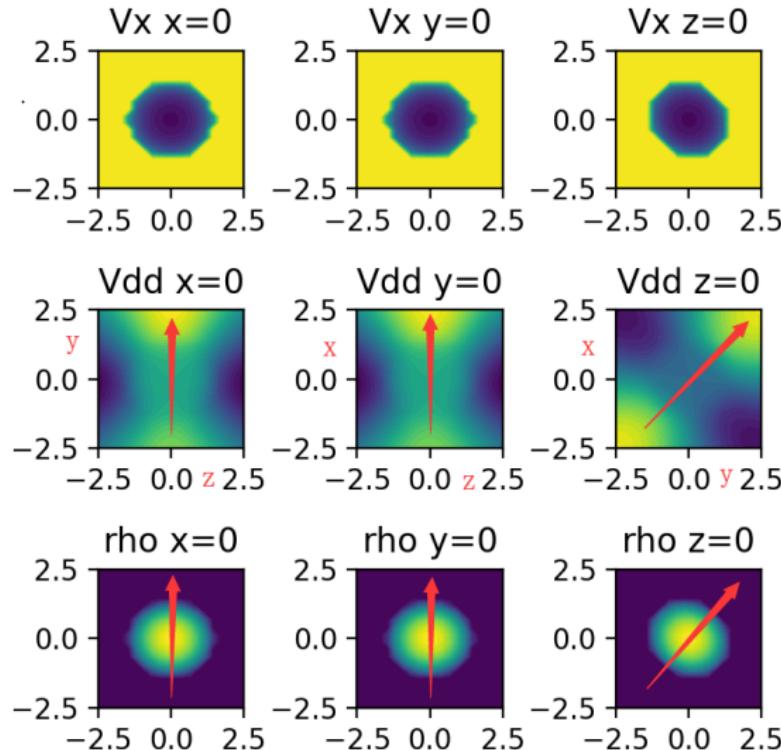


Figure: The result in 3D agrees well with 2D: momentum space

PyDPFT: 3D dipole dipole - position

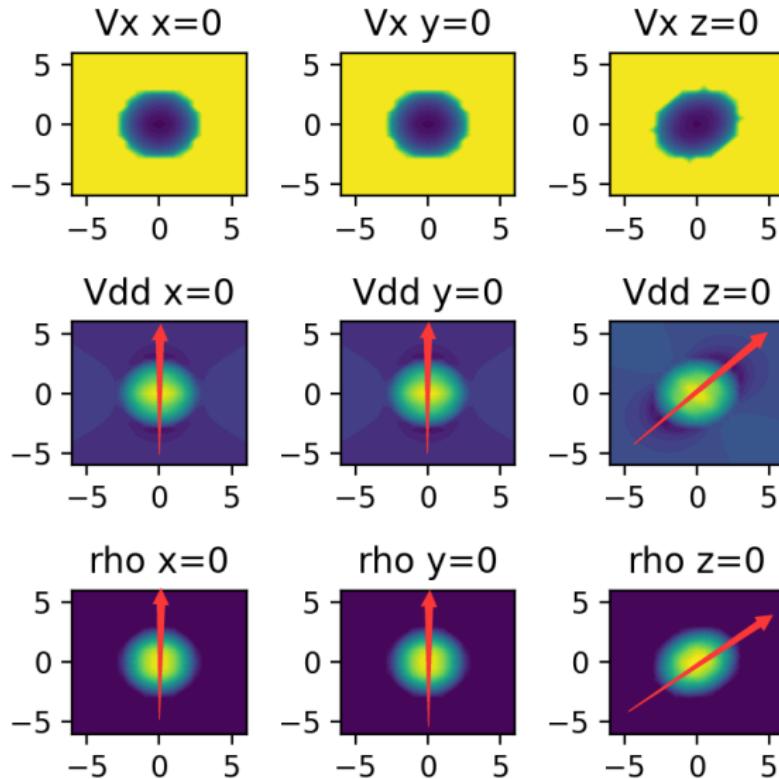


Figure: The result in 3D agrees well with 2D: position space

An initial exploration: filtering the TF density

- ▶ Discontinuity in TF density due to step function $\eta()$

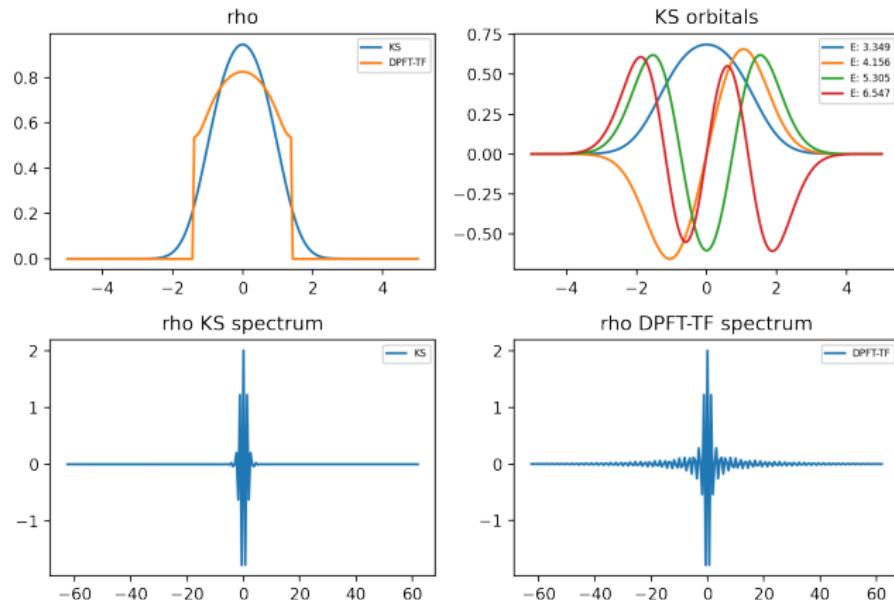


Figure: Original

An initial exploration: filtering the TF density

- Discontinuity in \mathbf{r} or t space leads to high frequency responses in \mathbf{k} or ω space

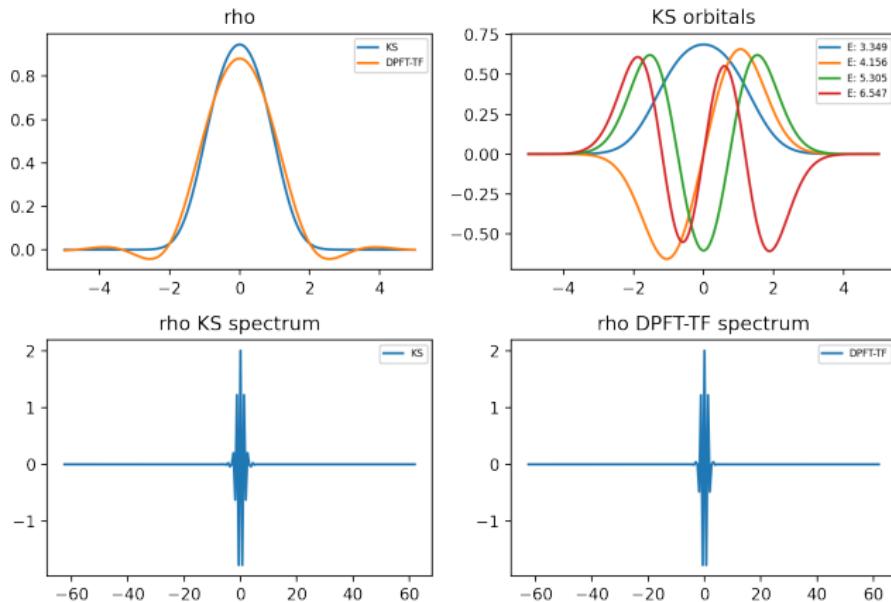


Figure: Filtered