Quantum States Of EM Field =============================== :Date: 2 August 2019 What is the problem ? ------------------------ Derivation ------------- **Step 1** Fock States / Number States A Fock state is a state with a well-defined number of photons, i.e. an eigenstate of .. math:: \begin{align*} & N = \sum\limits_M N_M = \sum\limits_M a_M^{\dagger}a_M\\ & n=0 \text{ (vacuum state): } |vac\rangle = ...\otimes |0\rangle \otimes |0\rangle \otimes ...\\ & n=1 \text{ (one photon): } \sum\limits_M c_M |1_M\rangle \\ & n=2 \text{ (two photons): } \\ & \;\;\; |2_M\rangle = ...\otimes |0\rangle \otimes |2\rangle \otimes ...\\ & \;\;\; |1_M,1_{M'}\rangle = ...\otimes |1\rangle \otimes ... \otimes |1\rangle \otimes ...\\ & \;\;\; |n_M,n'_{M'}\rangle = {(a_M^{\dagger})^n \over \sqrt{n!}} {(a_{M'}^{\dagger})^{n'} \over \sqrt{n'!}} |vac\rangle \\ & \;\;\; \text{and any superposition of them}\\ \end{align*} - All one-photon states are ultimately **monomode**, because :math:`\sum\limits_M c_M |1_M\rangle=A^{\dagger}|vac\rangle \text{ with } A^{\dagger} =\sum\limits_M c_M a_M^{\dagger}` -