PyTorch Tutorial RNN 1 ========================= :date: 19 oct 2019 `download data `__ .. code:: python from io import open;import glob;import os import unicodedata;import string import torch;import torch.nn as nn import random;import matplotlib.pyplot as plt allLetters=string.ascii_letters+" .,;'" def findFiles(path): return glob.glob(path) def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD',s) if unicodedata.category(c)!='Mn' and c in allLetters) def readLines(filename): lines=open(filename,encoding='utf-8').read().strip().split('\n') return [unicodeToAscii(line) for line in lines] def lineToTensor(line): tensor=torch.zeros([len(line),1,len(allLetters)]) for i,letter in enumerate(line): #print(i,letter) index=allLetters.find(letter) tensor[i][0][index]=1 return tensor def categoryFromOutput(output,allCategories): values,indices=output.topk(1) index=indices[0].item() return allCategories[index],index def randomTrainingExample(allCategories,categoryLines): category=random.choice(allCategories) line=random.choice(categoryLines[category]) categoryTensor=torch.tensor([allCategories.index(category)],dtype=torch.long) return category,line,categoryTensor,lineToTensor(line) class GetData: def __init__(self): self.categoryLines={};self.allCategories=[] for filename in findFiles('*.txt'): category=os.path.splitext(os.path.basename(filename))[0] self.allCategories.append(category) self.categoryLines[category]=readLines(filename) #print(self.categoryLines['Chinese']) #print(lineToTensor('abc')) class RNN(nn.Module): def __init__(self,inputSize,hiddenSize,outputSize): super(RNN,self).__init__() self.hiddenSize=hiddenSize self.i2h=nn.Linear(inputSize+hiddenSize,hiddenSize) self.i2o=nn.Linear(inputSize+hiddenSize,outputSize) self.softmax=nn.LogSoftmax(dim=1) def forward(self,input,hidden): combined=torch.cat((input,hidden),1) hidden=self.i2h(combined) output=self.softmax(self.i2o(combined)) return output,hidden def initHidden(self): return torch.zeros([1,self.hiddenSize]) class Agent: def __init__(self,learnRate): self.learnRate=learnRate self.getData=GetData() self.rnn=RNN(len(allLetters),128,len(getData.allCategories)) self.criterion=nn.NLLLoss() def trainOne(self,categoryTensor,lineTensor): hidden=self.rnn.initHidden() self.rnn.zero_grad() for i in range(lineTensor.shape[0]): output,hidden=self.rnn(lineTensor[i],hidden) loss=self.criterion(output,categoryTensor) loss.backward() for p in self.rnn.parameters(): p.data.add_(-self.learnRate,p.grad.data) return output,loss.item() def train(self,numIterations): currentLoss=0;losses=[] for iter in range(1,numIterations+1): category,line,categoryTensor,lineTensor=randomTrainingExample( self.getData.allCategories,self.getData.categoryLines) output,loss=self.trainOne(categoryTensor,lineTensor) currentLoss+=loss if(iter%1000==0): losses.append(currentLoss);currentLoss=0 print("loss",loss) plt.plot(losses);plt.show() agent=Agent(learnRate=0.005) agent.train(100000) .. figure::  :alt: image.webp image.webp