nCoV Predictor ============================================================= :Date: 1 Mar 2019 - code .. code-block:: python import urllib.request, json import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' with urllib.request.urlopen(url) as dataUrl: data = json.loads(dataUrl.read().decode())['data'] data = json.loads(data) for key, value in data.items(): print(key) chinaDayList = data["chinaDayList"] confirm = [i['confirm'] for i in chinaDayList] date = [i['date'] for i in chinaDayList] plt.plot(date,confirm,'.',label='original data') def logistic(x, a, b, c): return a/(1+np.exp(-b*(x-c))) xdata = np.array(range(len(confirm))) popt, pcov = curve_fit(logistic, xdata, confirm) xdata *=2 plt.plot(xdata, logistic(xdata, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) plt.title('nCoV china total: logistic regression') plt.legend() plt.show()