Density Functional Theory ============================ :Date: 28 July 2019 Dependency ------------- - `Schrodinger Equation`_ - `Born Oppenheimer Approximation`_ - Functional_ .. _Schrodinger Equation: .. _Born Oppenheimer Approximation: .. _Functional: What is the problem ? ------------------------ Calculate the approximate wavefunction and energy for atoms Derivation ------------- **Step 1** Hohenberg Kohn theorem :math:`n(r)`: groundstate electron density :math:`v(r)`: external potential Then Functional_ :math:`v=v[n]`, meaning if we observe some :math:`n(r)`, then we know exactly what potential :math:`v(r)` generates such density distribution **Step 2** Proof of **Step 1** *TO BE ADDED* **Step 3** The energy .. math:: \begin{align*} E[n] & = T+U+V = T[n]+U[n]+\int n(r)v(r) \; d^3r\\ & where\\ & T = \text{Kinetic energy of electrons}\\ & U = \text{Electric potential}\\ & V = \text{Total external potential} \end{align*} **Step 4** Kohn-Sham approach to evaluate The energy Introduce single particle orbitals :math:`\chi_i` .. math:: \begin{align*} & T=T_{\text{single particle}} + T_{\text{correlation}} = T_s+T_c \\ & T_s = T_s\{\chi_i[n]\}\\ & \text{Introduce:}\\ & E_{xc} = (T-T_s)+(U-U_H)\\ & \Rightarrow\\ E[n] & = T_s\{\chi_i[n]\}+U_H+E_{xc}+V \end{align*} The idea above is to leave all the non-trivial parts to :math:`E_{xc}=E_{x}+E_{c}` - :math:`x` stands for exchange energy due to the Pauli Principle - :math:`c` stands for correlation energy, :math:`T_c` is part of :math:`E_c` We have .. math:: \begin{align*} & T_s = ...\text{ trivial expression we know} \\ & U_H = ...\text{ trivial expression we know} \\ & E_x = ???\text{ can only be calculated after approximation(step 5)} \\ & E_c = ???\text{ can only be calculated after approximation(step 5)} \end{align*} **Step 5** Approximations to find :math:`E_{xc}` *TO BE ADDED* **Step 6** Get the groundstate energy by minimizing :math:`E[n]` wrt :math:`n` **Kohn-Sham Equations** **TO BE CONTINUED**